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Abstract

Recommender systems assist users to make decisions

among a huge volume of options. Accuracy‐oriented
recommender systems focus on the prediction power of

algorithms and neglect that users may appreciate diverse

and novel recommendations in real‐world scenarios. Thus,

this paper proposed a multicriteria recommendation

model that can optimize the recommendation accuracy,

diversity, novelty, and individual tendency simultaneously.

Additionally, a new multiobjective bacterial foraging op-

timization method is proposed to improve its searching

capability and the performance of recommendation

model. The proposed optimization‐based multicriteria

recommendation algorithm is compared with existing

methods on both benchmark functions and real‐world
data sets. The results demonstrate that the proposed

algorithm is superior to other recommendation algorithms

in most cases. This study provides insights in recomme-

ndation system design and draws scholarly attention to the

optimization‐based recommendation strategy.
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1 | INTRODUCTION

Recommendation systems utilize user historical information and side information to build
connections between users and items. Recommender system (RS) contributes to the core
competitive advantages of intelligent systems, such as e‐commerce, social media, and short
video platform, by identifying the most relevant products and reduces consumers' costs for
searching.1 In the past few decades, the huge demand of recommendation applications accel-
erates the development of recommendation approaches. Conventional recommendation tech-
niques focus on maximizing the prediction accuracy and recommending highly rated items to
users.2 However, users tend to receive similar items due to the accuracy‐oriented re-
commendation methods.3 This phenomenon was coined as “portfolio effect” by Ali and van
Stam.4 For this reason, researchers suggest some other user perceived criteria, such as novelty
representing what portion of the recommended items the user did not know about, and di-
versity of recommendation list.5 Additionally, each user has his/her own preference for re-
commendation accuracy, novelty, and diversity, which creates challenges for recommendation
methods effectiveness.

Various recommendation techniques have been proposed which consider not only the
result accuracy but also other criteria, such as novelty and diversity. Most popular approaches
include the two‐stage approach which focuses on re‐ranking items in the recommendation
list,6–8 graph‐based approach,9 clustering‐based approach,10–12 and matrix factorization ap-
proach.13,14 Most of these approaches use a sequential process which optimizes one criteria at a
time and then optimize the second criteria, and few of them consider more than three per-
formance criteria simultaneously. Therefore, some studies utilize heuristic optimization
methods by formulating the recommendation task as an optimization problem. The re-
commendation performance criteria are regarded as optimization goals. For example,15–19 use
particle swarm optimization (PSO) and evolutionary algorithm (EA) to balance the technique
performance in accuracy and diversity, or accuracy and item unpopularity. However, these
heuristic optimization algorithms are probably confined in the local optimum thus not able find
global optimal solution. Inspired by the chemotactic (foraging) behavior of Escherichia coli,
Passino proposed the bacterial foraging optimization (BFO) method which has superior global
searching capability.20 So far, most of these optimization‐based recommendation techniques
only leverage the optimization methods while have not considered enhancing the optimization
algorithm fundamentally.

Therefore, in this paper, we propose a multicriteria recommendation methods building
upon the collaborative filtering (CF) algorithm and enhanced BFO algorithm. We formulate the
recommendation task as a multiobjective optimization problem that aims at simultaneously
maximizing the recommendation accuracy, diversity, novelty, and fitness with individual
tendency. To improve the search capability and convergence speed of BFO simultaneously, a
hypercube fast searching strategy is proposed and used in BFO. The multiobjective BFO can
effectively identify the Pareto frontier in the optimization problem, which contains more than
one recommendation options with superior performance in at least one of the performance
dimensions.

The main contributions of this study are as follows:

• An optimization‐based CF recommendation method is proposed which considers four re-
commendation objectives simultaneously for the first time, that is, accuracy, diversity, no-
velty, and individual user tendency.
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• An improved multiobjective bacteria foraging optimization algorithms based on hypercube
fast searching strategy is proposed which demonstrate superior effectiveness by obtaining the
Pareto frontier in solution space.

• The proposed recommendation method can obtain multiple optimal trade‐off solutions for a
target user, and help users to select the most appropriate solution according to personalized
preference.

The reminder of this paper is organized as follows: Section 2 gives the related literature
including CF and bacteria foraging optimization. Section 3 describes the proposed multicriteria
recommendation method and the improved multiobjective BFO. Section 5 shows extensive
experiments to evaluate the effectiveness of proposed method. Section 6 discusses the results
and concludes this paper.

2 | RELATED WORK

2.1 | CF

Many approaches and techniques have been developed for RS applications in the past 20
years.21 CF is one of the most commonly used and studied recommendation technique given its
simplicity and effectiveness. As depicted in Figure 1, CF‐based RS employs user features, item
features, and user‐item rating information to produce a ranked list of items as recommendation
candidates. CF‐based RSs are proven effective to “point” users to new and related items.

Content boosted collaborative filtering is a variation of CF method that combines user‐
based CF and item‐based CF. The content boosted CF is realized by two steps: neighborhood
selection and rating prediction. These two steps can be explained as follows.

2.1.1 | Neighborhood selection

In the setting of RS problem, a set of users is denoted by U and a set of items is denoted asM. A
profile for user i consists of lu user features. A profile for item j consists of lj item features. A set
of explicit ratings R is available in the RS database, where Rij is the rating given by ith user to
jth item. It is commonly supposed that one rating can be made by any user u U for a

FIGURE 1 An example of CF‐based RS. CF, collaborative filtering; RS, recommender system [Color figure
can be viewed at wileyonlinelibrary.com]
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particular item m M . The subset of users that have rated an item j is denoted by notion Uj.
Likewise, Mi represents the subset of items that have been rated by a user i.

The first step to predict rating of user i on item j is to find the closest profile to the active user
and active item. The distance between user profiles is calculated using Equation (1). User rating is
also treated as one of the user features, the distance for rating feature is calculated according to the
Pearson similarity function shown in Equation (2). The distance between item profiles is calculated
using Equation (3). Among the item features, rating is also treated as a feature and the distance is
calculated according to the Pearson similarity function (2) as well. The distance information be-
tween user profiles and item profiles help to identify the nearest neighbors of a target user.

Dist u u w Dist f f( ) = ( , ),a b i ai bi,  (1)

PearsonSim ra rb
ra ra rb rb
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Dist I I w Dist f f( ) = ( , ),a b j aj bj,  (3)

where wi is the weight of ith feature in user profile; Dist f f( , )ai bi the measure of distance
between ith feature in the user a profile and user b profile; rai the rating of user a to commonly
rated item i; rbi the rating of user b to commonly rated item i; rai the average of ratings of user a
on all rated items; rbi the average of ratings of user b on all rated items; M the total number of
items rated commonly by user a and user b; wj the weight of jth feature in item profile;
and Dist f f( , )aj bj the measure of distance between jth feature in the item a and item b profile.

2.1.2 | Rating prediction

In the rating prediction process, k nearest neighborhoods of user i, which is denoted as
U u u= { , …, }k1 . The ratings of k nearest neighborhoods on item j is calculated using Equation
(4). The rating of user i on item j is then calculated by Equation (5). The candidate items are
then ranked by predicted ratings. The items with highest ratings above the threshold are
selected as recommendation results.
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where Rk j, is the rating of user k on item j; Dist I I( , )f j the distance between item f and item
j calculated according to Equation (3), here only n nearest neighborhoods of item j is
used; Dist u u( , )i k the Pearson distance between user i and user k calculated according to
Equation (2); Rk j, the rating of user k on item j; and Rk the average of ratings of user k on his/
her rated items Mk.

Despite the simplicity of CF method, when the item set is very large but with only a very small
portion is rated, the user‐item matrix can be extremely sparse that cannot provide effective
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prediction results. New user or new item problems also make it difficult to identify similar users
or items for predictions, which can result poor system accuracy performance.22,23 As a result, a
great number of studies leverage user and item side information to alleviate the data sparsity
problem.24 Considering that different user and item features may contribute differently in the
recommendation generation process, the weighting method is adopted in this study.

2.2 | Swarm intelligence (SI) based RS

SI represents a set of nature inspired algorithms that employ a population of simple agents
who interact with each other to explore the solution space for optimal solution.25 SI‐based
recommendation method is an emerging trend in RS research with diverse application
scenarios give the good performance of SI in solving the multiobjective optimization and
feature selection problems26,27 categorized the SI‐based recommendation approaches into
six categories, namely, optimizing feature weights, clustering users or items, assisting in
graph‐based recommendation scenarios, re‐ranking recommendations, building latent
factor models, and others. Among these studies, a lion's share of work focus on using SI to
optimize weights of different features or parameters of RS.

Feature weighting and parameter setting are important process in content‐based RS which
uses multiple user and item features to identify neighborhood. Rad and Lucas28 defined user
similarity in different feature dimensions and used particle swarm optimization to determine
the optimal weights of each similarity dimension (e.g., location, occupation, age). Following
this model case, some researchers adopted different SI techniques, such as gray would opti-
mization,29 fuzzy PSO,30 gravitational search algorithm30, and bat algorithm.31 Sobecki in-
corporated SI into KNN algorithm for student course recommendation and compared the
performance of particle swarm optimization, ant colony optimization, artificial bee colony
optimization, invasive weed optimization and bat algorithm.32 Results show that ant colony
optimization, outperformed other approaches in prediction accuracy.

Moreover, SI techniques are used in multiobjective recommendation problems that consider
more than one performance factors. Geng et al.17 employed nondominated neighbor immune
algorithm (NNIA) to select Top‐N recommendation list from candidate recommendation list
obtained by item‐based CF. Multiobjective evolutionary algorithm and its variation have been
employed to solve the two‐objective recommendation problem.16,18,19 Ribeiro et al.33 used
Pareto‐efficient ranking method to find the optimal solutions in multiobjective recommenda-
tion task. Results in these studies validated the superior performance of SI techniques in
comparison to traditional single‐objective recommendation methods. However, few studies
adequately evaluate the searching capability and converge speed of the adopted SI techniques,
and none of them investigated more than three recommendation objectives.

2.3 | BFO

Inspired by the foraging behavior of E. coli, BFO was proposed by Passino in 2002.20 It is composed
of three steps in the optimization process: chemotaxis, reproduction, elimination, and dispersal.

• Chemotaxis. Chemotaxis is defined in BFO to simulate the swarming and tumbling behaviors
of E. coli. Specifically, the flagellum of bacteria are used to control the directions of
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movement. The running operation is conducted when they are counter‐clockwise, while the
tumbling operation is performed when they are clockwise. In BFO method, the direction
angle ∆ is used to decide the counterclockwise or clockwise operation. The chemotaxis can
be formulated as follows:

θ i j k l θ i j k l C i
i

i i
( + 1, , , ) = ( , , , ) + ( )

( )

( ) ( )
,

T

∆

∆ ∆
(6)

where θ i j k l( , , , ) is the position of the ith bacterium at jth reproduction, kth reproduction,
and lth reproduction. i( )∆ is the direction angle of the ith bacterium randomly generated in
[−1, 1], and C(i) is the chemotaxis step size. The larger values of C(i) contribute to more
randomness of the population for global search, while smaller values make it necessary to
conduct more local search.

• Reproduction. In BFO, the health condition of bacteria over the past chemotactic process can
be evaluated and used as a criterion for the reproduction. The parameter Jhealthi is used to
evaluate the searching capability of ith bacterium, which could be calculated as

i j k lJhealth = J( , , , ).i

j

Nc

=1

 (7)

The first half ranking bacteria with the better performance will be kept in population and
the second half bacteria with poor search capability will be replaced by the first half bacteria as
follows:

θ i Sr j k l θ i j k l( + , , , ) = ( , , , ), (8)

where J(i, j, k, l) is the fitness value of ith bacterium at the jth chemotaxis, kth reproduction,
lth dispersal, and Sr= Pop/2, Pop is the population size. If the optimization problem is to
minimize the objective fitness function, then the smaller values of Jhealthi means the better
health condition of the bacterium.

• Elimination and dispersal. Following the predefined chemotactic steps and reproduction
time, elimination‐dispersal is taken to move the bacteria to the dynamic position.

θ i j k l lb ub lb rand,( , , , ) = + ( − ) × (9)

where ub and lb are the upper and lower boundary of the positions, and rand is a randomly
generated constant ranging from 0 to 1.

3 | THE BFO ‐BASED MULTICRITERIA
RECOMMENDATION METHOD

In this section, we first provide an overview of the proposed recommendation method. Then
the improved multiobjective BFO algorithm is described.

As depicted in Figure 2, besides historical user‐item ratings, both user and item features are
utilized in the recommendation framework which builds upon CF. The improved multiobjective
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BFO was used to search for optimal weighting parameters of different feature similarities. The
operation process of proposed recommendation method is illustrated by Pseudo code 1.

Pseudo code 1: HFSMOBFO for Multiple‐Objective Quality Factors Optimization

01 Inputs: User‐item ratings, user features, item features

02 Initialization: Bacteria positions θ, evaluation criteria ( fm
i , m= 1,…, M)

03 For l Ned= 1: (Elimination and dispersal loop)

04 For k Nre= 1: (Reproduction loop)

05 For j Nc= 1: (Chemotaxis loop)

06 For i Pop= 1 :

07 Location information oriented chemotaxis using Equations (16)‐(19)
08 Calculate the fitness values of multiple objectives ( fm

i , m= 1,…, M)

09 End for

10 Create ranked set of bacteria val (see Pseudo code 1)

11 Obtain virtual fitness value fit using Equations (20)‐(21)
12 End for (Chemotaxis loop)

13 Partial reproduction using Pseudo code 2

14 End for (Reproduction loop)

15 Partial elimination using Pseudo code 3

16 End for (Elimination and dispersal loop)

17 Outputs: non‐dominated frontier (user feature weightings and item feature weightings)

3.1 | Objective functions

In searching for the best combination of different feature similarities, four recommendation
objectives are to be optimized, namely, accuracy, diversity, novelty, and individual user

FIGURE 2 Overview of proposed multicriteria recommendation method [Color figure can be viewed at
wileyonlinelibrary.com]
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tendency. Those four criteria are considered in this study owing to their popularity in existing
multicriteria recommendation system evaluation.34,35

The prediction accuracy measures how close the predicted rating is to the real rating.
Therefore, the first objective of recommendation algorithm is to minimize the error in prediction
as show in the following equation:

f
N K

|Actual Rating − Predict Rating |Min =
1

,
i

N

j

K

ij ij1
=1 =1
  (10)

where N is number of users selected from training data for the learning of optimal model
parameters (criteria weightings), K is the number of recommended items for each user.
Actual Ratingij represents the known rating of user i on item j Predict Rating. ij represents the
predicted rating of user i on item j.

The recommendation diversity can be measured in multiple ways, such as the average
pairwise dissimilarity,36 Gini coefficient,37 user perceived diversity based on questionnaire
response,38 and so forth. The pairwise dissimilarity measure is adopted in this study given its
effectiveness in previous studies. The second objective for RS is to maximize the diversity
function Equation (11).

f
N

Dist I I

L L
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,
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i S j S i j
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,
u u
1 1
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(11)

where Su is the recommendation list of user u; L is the length of recommendation list; Dist I I( )i j,

is the distance between item i and j that are both in Su. The distance calculation is explained in
Section 3.1 as shown in Equation (1).

The novelty of recommendation list is measured by the following equation:18
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(12)

where Nrj denotes the number of ratings for item j in the training data. This equation measures
the newness of recommendation list.

Individual user tendency measures the closeness between user history tendency
(preference) and tendency of recommended list. The tendency measures the level of di-
versity that users prefers. Therefore, the objective of RS algorithm is calculated using
Equation (15).39 Terms in the equations have been defined in earlier sections. Besides the
above quality criteria, explainability further impacts the persuasiveness of recommenda-
tions.40 In this study, we mainly discuss four focal criteria—accuracy, diversity, novelty,
and tendency.

I I
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3.2 | The improved multiobjective BFO

The improved multiobjective BFO is named as HFSMOBFO, which integrates four novel
strategies to improve the searching capability and converge speed of traditional BFO. The four
strategies are: (1) location information‐oriented chemotaxis; (2) hypercube fast searching
strategy for nondominated Pareto front; (3) virtual fitness of multiobjective optimization; (4)
dynamic population generation operator. The overall framework of HFSMOBFO is illustrated
in Figure 3. Explanations of each strategy are described below.

3.2.1 | Location information‐oriented chemotaxis

In the basic BFO, there is no information exchange between the bacteria. Though it may bring
higher capability for bacteria to search for the global best, the randomness exploitation without
information exchange would consume more computational time if the problems are rather
complexity with high dimensional space. Therefore, location information‐oriented strategies
are leveraged in the process of chemotaxis.

A new swimming direction generation method is designed with the intuition that the
remained locations are best locations and will disseminate pheromone to attract other bacteria.
Meanwhile, each bacterium will receive a stochastic pheromone from environment. The
swimming direction index based on location information in chemotaxis process is defined as
follows:

roll C norminv rand P θ i j k l θ A j k l= · ( ( , 1, ) − 1) · ( ( , , , ) − ( , , , )),i
d d d

i (16)

C CB
n

n
CB

μ

μ
= max ·

log
, ·

log
,2 2





 (17)

where rolli
d is swimming direction of the ith bacterium in dth dimension, d D}{1,2, …, . The

total dimension of position is D. Ai is a randomly selected bacterium, which the ith bacterium
swims but the position should be different from index i. norminv (·) is the Gaussian distraction
sampling function, whose parameters include: a random sampling probability between 0 and 1,
mean value (equals to 1), variance P. The expression “norminv rand P( , 1, ) − 1” controls the
swimming step and improves the diversity in generated direction by proving possible random
reduction or direction reverse. CB is the basic chemotaxis step size, C is step size after self‐
adaptation and it decreases as the iteration number increases. μ is a constant defined pre-
viously, which is larger than 1 and smaller than the largest iteration times. When n is larger
than μ, C equals to step size calculated at iteration μ.
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FIGURE 3 Overall framework of proposed HFSMOBFO [Color figure can be viewed at wileyonlinelibrary.com]
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Based on the direction generator roll, the chemotaxis of bacteria is redesigned to accelerate
the convergence and avoid the disturbance of searching for better positions (toward bacterium
Ai), as shown in the following equations:

θ i j k l θ i j k l roll ,( , , , ) = ( , , , ) +d d
i
d

(18)

θ i j k l
θ A j k l rand

θ i j k l
D( , , , ) =

( , , , ) if ( 0.5)

( , , , ) otherwise
= 1, 2, …, ,d

d
i i

d

d





(19)

where randi
d is a randomly generated constant ranging from 0 to 1.

3.2.2 | Hypercube fast searching strategy (HFS)

HFS is proposed to identify the dominated, nondominated solutions according to the fitness
values of bacteria. In this process, it is assumed that there are M number of objectives (i.e.,

f f fF(X) = [ , , …, ]M1 2 ) to be minimized, simultaneously. The definition of nondominated
solutions or Pareto frontier can be provided.

Definition 1 (Dominance definition). Let X1 and X2 are two feasible solutions of the
multiobjective problem. The solution X1 dominates X2 when two conditions are
satisfied:

(1) Solution X1 is no worse than X2 in all objectives (i.e., i , f f(X ) (X )i i1 2 );
(2) Solution X1 is strictly better than X2 in at least one objective (i.e., i , f f(X ) < (X )i i1 2 );

Definition 2 (Nondominance solution set). Given a set of solutions, the nondominance
solution set is a set of solutions which are not dominated by any other feasible solutions.
The Pareto‐optimal set consists of nondominated solution set of entire feasible decision
space, and can be mapped as a boundary which is normally regarded as the Pareto front.

In HFS, the bacteria are divided into three groups in obtaining the nondominated
solutions, that is, “selection,” “removal,” or “keeping” group. The HFS constructing hy-
percube recursively by drawing perpendicular lines toward the axis of the objective di-
mension at the positions where there exists maximum or minimum value. These lines form
a hypercube that separate the solution space into two sub‐space that helps to classify the
bacteria.

To illustrate the HFS, we use a two‐objective problem with two dimensions in solution space for
example. As depicted in Figure 4, by drawing perpendicular lines from the leftmost point and
lowermost point toward the f1 axis and f2 axis, a hypercube (a rectangle in 2‐D space) is formed. The
solution points outside the rectangle represent dominated solutions and the points inside represent
nondominated solutions. In this way, all the solution points can be divided into three types in each
iteration, namely, “select” (the selected points for hypercube creation), “keep” (the points within the
hypercube), “remove” (the points outside the hypercube).

According to the pseudo code of HFS operator (Pseudo code 1), we use FITiter to represent
the matrix containing the fitness values of all the positions in current iteration, and PFiter as the
current Pareto front. At the very beginning, the fitness values of all bacteria are ranked
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according to FITiter and PFiter. A parameter val is created to record the scores which related to
the ranks of bacteria. It assumed that vali

iter represents the score of the ithith (i Pop= 1, …, )
bacterium at the iterth HFS iteration, which was assigned with zero at the very beginning. In
each iteration, the vali

iter of bacteria classified as the “selection” type are increasing with the
iteration (i.e., val val= + 1i

iter
i
iter−1 ), while the vali

iter of bacteria classified as the “removal” type
are decreasing (i.e., val val= − 1i

iter
i
iter−1 ). Thus, the earlier a point was classified as “selection”

type, the larger val it will obtain. By contrast, the earlier a point was classified as “remove” type,
the smaller val it will obtain.

The HFS for nondominated Pareto front is provided in Pseudo code 2.

Pseudo code 2: HFS for Non‐dominated Pareto Front

01 Initialization:val i Pop= 0, = 1, …,i

02 While the “keep” group is not empty

03 Fort = 1: M (//M is the number of objectives)

04 Find minimum fitness value of the objectives FITt
iter among the bacteria in “keep” group, and put

the bacterium with the minimum fitness value into the “selection” group (//only one
bacterium with minimum fitness in tth objective is obtained for “selection” group)

05 End for(//thus, the number of bacteria obtained is M)

06 Construct a hypercube based on those M bacteria

07 Remove the bacteria outside the hypercube

08 Update the “keep” group using the bacteria within the hypercube but not the ‘selection'
10 Update the score value of bacteria in “selection” group, i.e. val val= + 1i i , where i is the bacterium

in “selection” group

11 Update the score value of bacteria in “removal” group, i.e. val val= − 1i i , where i is the bacterium
in “removal” group

12 End while

13 Outputs: bacteria ranking scores (recorded in val) and non‐dominated solutions (consisting of
bacteria from the “selection” group)

FIGURE 4 2‐D illustration of HFS nondominated ranking operator. HFS, Hypercube fast searching strategy
[Color figure can be viewed at wileyonlinelibrary.com]
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3.2.3 | Virtual fitness

In the above HFS strategy, the performance of bacteria can be ranked using the parameter val.
However, simply using val for evaluation cannot comprehensively represent the good or poor
contributions of solutions to the objectives. In multiobjective problems, all the nondominated
solutions are important. For this reason, we defined “virtual fitness” as the criterion to evaluate
the performance of bacteria in each iteration. To differentiate the performance of bacteria and
enhance the calculation process efficiency, the virtual fitness is defined as follows:

val
val min val val

val max val val
i Pop,=

− { } if < 0

− { } − 1 if > 0
= 1, ..,i

i i Pop i i

i i Pop i i

=1, …,

=1, …,




 (20)

fit val f min f m M,= · /( { }) = 1, 2, …,i i

m

M

m
i

m M m
i

=1

=1, …, (21)

where Pop is total number of bacteria in the given set, fiti represents the virtual fitness value of
the ith bacterium. MM is the total number of objectives and m is the objective index, f

m
i is the

fitness value of the ith bacterium at the mth object.
It needs to note that, for solutions with positive values in val (i.e., val i Pop> 0, = 1, ..,i ), the

larger value of val indicates that the solution is more closer to the Pareto front. And for
solutions with negative values of val (i.e., val i Pop< 0, = 1, .., ), the smaller value of val in-
dicates that solution is far from the Pareto front.

Pseudo code 3: Partial reproduction

01 Sort the bacteria according to the virtual fitness value fit (obtained using Pseudo code 1 and Equations
(20)–(21)), the bacteria located at the frontier indicate the better performance

02 for i Sr= 1 : //where Sr Pop Pop= /2 is the population size

03 for d D= 1 :

04 if rand P< re

05 θ Sr i j k l θ i j k l( + , , , ) = ( , , , )d d //the dth dimension of the position

06 else

07 θ Sr i j k l θ Sr i j k l( + , , , ) = ( + , , , )d d

08 end if

09 end for

10 end for

3.2.4 | Partial reproduction and partial elimination

The duplication process in the original BFO simply replaces half of the bacteria (less healthy
bacteria) with the healthier bacteria. This dynamic population generation strategy makes it
harder to distinguish between good bacteria and bad bacteria on the Pareto frontier. Therefore,
we use the “virtual fitness” to identify less healthy bacteria and replace part of their dimension
values with dimension values of healthier bacteria according to a probability‐based threshold
Pre. The Pseudo code 3 describes the process of partial reproduction in details.
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The primary goal of elimination is to increase the diversity of bacteria positions. However,
multiobjective optimization problems usually have relatively flat gradient and initializing the
bacteria positions may disturb the approaching to optimal positions. Therefore, only some
dimensions of bacteria are initialized with the probability of Ped to maintain the approaching to
optimal solutions as well as increase diversity. The process of partial elimination is realized as
follow (Pseudo code 4):

Pseudo code 4: Partial elimination

01 if rand P< ed

02 θ Sr i j k l lb ub lb rand( + , , , ) = + ( − ) ×d d d d //the dth dimension of the position, d = 1,…, D
03 else

04 θ Sr i j k l θ Sr i j k l( + , , , ) = ( + , , , )d d

05 end if

where ubd and lbd are the upper and lower boundary of the positions in the dth dimension, and
rand is a randomly generated constant ranging from 0 to 1.

4 | EXPERIMENT AND RESULTS

This section firstly evaluates the performance of proposed HFSMOBFO by making comparison
with six well‐known multiobjective optimization algorithms: (NSGAII,41 MOPSO,42 MRBCO,43

MOCLBFO,44 MCMBFO45) on 14 well‐known benchmark functions with two or three objec-
tives. Subsequently, Section 4.2 further demonstrates the effectiveness of HFSMOBFO‐based
CF by comparing it with eight CF‐based recommendation algorithms on a real‐world data set.

4.1 | Comparison on benchmark problems

In this paper, experiments were performed using the MATLAB R2019a (Math Works Inc.)
environment. Table 1 listed the parameter settings for the five algorithms. The parameters
settings for the six candidate algorithms are consistent with their corresponding references. All
the algorithms use equal population size, number of objectives, dimension, and FEs.

The six candidate algorithms are firstly tested on ten representative bi‐objective benchmark
problems, including Schaffer1 and Schaffer2,46 Fonseca and Fleming,47 Kursawe,48 Poloni,49 ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT650 and multiobjective benchmark problems DTLZ test suite.51 The
popular performance measure, hyper‐volume (HV)52 and inverted generational distance (IGD),53,54

are used as indicator of algorithm performance.
The HV metric measures the size of objective space covered by an approximation set and is

usually used to evaluate the convergence and diversity of the obtained approximate optimal
solution set. The larger the HV value, the better the comprehensive performance of the
algorithm. The IGD is an inverse variation of generational distance metric. IGD calculates the
minimum Euclidean distance between an approximation set A and the Pareto front PF⁎. IGD
can effectively evaluate the convergence performance and distribution performance of the
algorithm. The smaller the value, the better the comprehensive performance of the algorithm.
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TABLE 1 Parameter settings considered in this study

Algorithms Parameters Meaning Value

NSGAII41 proC The probability of doing crossover 1

disC The distribution index of simulated binary crossover 20

proM The expectation of number of bits doing mutation 1

disM The distribution index of polynomial mutation 20

MOPSO42 div The number of divisions in each objective 10

w The inertial weight in PSO 0.4

MORBCO43 freRe The frequency of reproduction 10

freEl The frequency of elimination and dispersal 20

NS The maximum length of swimming 4

Pel Probability of elimination 0.25

C1, C2 The learning factor 3

C Chemotaxis step 0.1

pRep Proportion of bacteria for reproducing 1/3

npbest the maximum number of historical best positions 2

MOCLBFO44 Nc Number of chemotaxis steps 200

Ns Limits the length of a swim when it is on a gradient 4

Nre The number of reproduction steps 5

Sr The number of bacteria reproductions (splits) per
generation

0.5 × S

Ned The number of elimination‐dispersal events 2

ped Probability that each bacteria will be eliminated/
dispersed

0.2

MCMBFO45 Nc Number of chemotaxis steps 200

Ns Limit the length of a swim when it is on a gradient 4

Nre The number of reproduction steps 5

Ned The number of elimination‐dispersal events 2

Cmax The maximum of the run length unit 1

Cmin The minimum of the run length unit 0.1

C1 The left learning factor of the ring topology structure 7.5

C2 The right learning factor of the ring topology structure 7.5

C3 The learning factor of the star topology structure 10

Informax The maximum of the neighborhood information 0.002

T The number of slave‐swarms 4
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Therefore, the HV and IGD measure can adequately measure diversity and convergence of A if
sufficient members of PF⁎ are known.55 Each trial is conducted 30 times independently. The
experiment results are shown in Tables 2 and 3 with the average results highlighted in bold and
the standard deviation results are shown in brackets. The obtained Pareto solutions of six
algorithms are illustrated in Figure 5.

Results in Table 2 reveal that the proposed HFSMOBFO approach outperforms other
candidate algorithms on seven (Schaffer1, Schaffer1, Kursawe, ZDT2, ZDT4, DTLZ2, DTLZ4)
test problems. NSGAII performs better on ZDT1, ZDT3, DTLZ5, and DTLZ6 test problem. It is
noteworthy that HFSMOBFO obtains almost equally better result as NSGAII on DTLZ6. Ac-
cording to results in Table 3, the IGD values of HFSMOBFO is better on seven (Schaffer1,
Schaffer2, Kursawe, ZDT2, ZDT4, DTLZ2, DTLZ4) test problems. The NSGAII still demonstrate
good solution quality on ZDT1, ZDT3, DTLZ5 and DTLZ6. Additionally, Figure 5 also de-
monstrates that the proposed HFSMOBFO outperforms most of candidate algorithms and
equally well as NSGAII, which proves that it could effectively find the optimal solutions with
good diversity and convergence in most cases.

4.2 | Comparison on movie recommendation task

Given the outstanding optimization capability of HFSMOBFO, the HFSMOBFO‐based CF is
further evaluated in real recommendation data sets using Grouplens—movielens 100 K and
1M data sets. These two data sets are widely used test sets for evaluating the performance of
recommendation algorithms in RS research. The data set details are reported in Table 4. In the
experiment, the default five subsets of 100 K data set are used for fivefold training and testing,
the 1M data set is divided into training set (80% of data) and test set (20% of data) randomly
and used for fivefold training and testing.

Four conventional recommendation methods and four optimization‐based recommendation
methods are implemented to quantify the performance of HFSMOBFO‐based CF (HSMBFO‐
CF). The list of algorithms is shown in Table 5. Table 6 lists the parameter setting in the CF
calculation process.

TABLE 1 (Continued)

Algorithms Parameters Meaning Value

HFSMOBFO S The number of bacteria; 100

Nrep The number of external archive 100

Nc Number of chemotaxis steps 200

Ns Limits the length of a swim when it is on a gradient 4

Nre The number of reproduction steps 5

Ned The number of elimination‐dispersal events 2

Pre Probability of reproduction 0.3

Ped Probability of elimination 0.25

C The run‐length unit during each run or tumble 0.4
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FIGURE 5 Pareto solution sets obtained by each algorithm [Color figure can be viewed at
wileyonlinelibrary.com]
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The accuracy performance of recommended list is measured by three commonly adopted
measures: precision, recall, and F1 measure.60 Given that precision usually drops with an
increase in the length of recommendation list while recall improves, F1 measure combines
precision and recall and provide an overall accuracy measure. Moreover, the proposed method
is also evaluated by how well they balance between the multiple RS quality factors.

TABLE 4 Description of movielens data set

Data sets Number of users Number of movies Number of ratings Sparsity

Movielens 100 K 943 1682 10,000 93.7%

Movielens 1M 6040 3883 1,002,209 95.5%

TABLE 5 Algorithms in movie recommendation experiment

Algorithms Meaning

CBCF Content boosted collaborative filtering56

Item‐CF Item‐based collaborative filtering57

User‐CF User‐based collaborative filtering58

KNN‐CF K nearest neighbors collaborative filtering59

NSGAII‐CF Collaborative filtering integrated with NSGAII

MOPSO‐CF Collaborative filtering integrated with MOPSO

MOBFO‐CF Collaborative filtering integrated with MOBFO

MOCLBFO‐CF Collaborative filtering integrated with MOCLBFO

HSMBFO‐CF Collaborative filtering integrated with HFSMOBFO

TABLE 6 Parameter setting for CF

Parameter Meaning Value

threshold Threshold for movie scores to determine if recommend or not 3.5

N Number of users selected from training data set for model learning 50

k Use k nearest user neighbors for CF 30

r Select the top r movies with highest predicted scores as candidates 10

scLb Lower bound of the feature weighting 0

scUb Upper bound of the feature weighting 1

dim Dimensions for the weightings 4

λNSM Weighting for movie name similarity 0.01

λTSM Weighting for movie time similarity 0.1

λGCSM Weighting for movie genre similarity 0.1

λRISM Weighting for movie ratings similarity 0.8
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The diversity, novelty, and user tendency evaluation criteria are measured by Equations (11),
(12), (15), respectively.

For optimization‐based CF (NSGAII‐CF, MOPSO‐CF, MOBFO‐CF, MCLBFO‐CF,
HSMBFO‐CF), the obtained Pareto frontier represents a set of optimal solutions. Since the
optimization‐based method can obtain a collection of nondominated solutions on the Pareto
frontier, there exist optimal solution for each of the four optimization objective or evaluation
criteria. Therefore, it is necessary to investigate the algorithm performance in each dimension.
In this paper, we developed four different measures to guarantee the reliability and general-
izability of results. Specifically, the “Ave” measure is calculated by averaging the performance
of all nondominated solutions on Pareto frontier. The “Pre” measure is to select the solution
with best precision measure on the Pareto frontier. The “Div” measure is to select the point
with best diversity measure on the Pareto frontier, and the “Ten” measure is to select the point

TABLE 7 Results on 100 K movielens data set

Algorithms Precision Recall F1‐measure Diversity Novelty Tendency

CBCF 57.937 46.001 50.969 82.049 208.846 81.536

Item‐CF 71.463 53.266 60.832 81.939 219.644 81.811

KNN‐CF 65.528 48.601 55.527 81.911 227.310 81.063

User‐CF 69.266 50.941 58.365 81.918 225.260 81.036

NSGAII‐CF Ave 71.605 54.251 61.371 81.896 227.169 82.495

Pre 71.436 53.529 60.835 81.904 227.278 82.253

Div 71.281 54.275 61.275 81.903 227.280 82.717

Ten 71.484 54.089 61.248 81.899 227.069 82.695

MOPSO‐CF Ave 71.374 54.050 61.175 81.894 227.426 82.318

Pre 71.372 53.716 60.946 81.856 227.785 82.222

Div 71.436 54.072 61.215 81.848 226.294 82.527

Ten 71.237 54.300 61.269 81.852 226.856 82.501

MOBFO‐CF Ave 69.400 60.359 64.199 82.064 226.745 82.710

Pre 70.338 58.768 63.637 82.029 226.799 82.564

Div 69.768 59.916 64.098 82.059 227.391 83.110

Ten 69.800 59.926 64.117 82.061 227.310 82.878

MCLBFO‐CF Ave 71.353 58.309 63.615 82.019 231.117 83.119

Pre 71.415 58.166 63.580 82.007 231.189 82.968

Div 71.326 57.900 63.383 82.006 231.048 83.004

Ten 71.326 57.900 63.383 82.006 231.048 83.004

HSMBFO‐CF Ave 71.619 54.445 61.502 82.062 233.952 84.686

Pre 71.492 54.093 61.226 82.078 230.520 83.566

Div 70.987 55.159 61.613 82.786 233.293 84.552

Ten 71.222 54.847 61.576 82.074 233.108 84.574
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with best tendency measure on the Pareto frontier. The reported value for “Ave,” “Pre,” “Div,”
and “Ten” are averaged over all tested users.

Results on the 100 K movielens data set are reported in Table 7 with the best two values
highlighted in bold. Figure 6 visualizes the performance of algorithms for F1‐measure, di-
versity, novelty, and tendency. Since optimization‐based CF methods obtain four sets of results,
the best values are used for visualization. Table 8 and Figure 7 presents the experiment results
on the 1M movielens data set.

From Table 7, the proposed HSMBFO‐CF outperforms all other algorithms in providing
more precise, diverse and novel items according to user tendency, while MOBFO‐CF shows the
superiority in terms of recall and F1‐measure. From the comparison results on 1M mo-
vienlends data set in Table 8, HSMBFO‐CF achieves the best performance in F1‐measure,
diversity, novelty and tendency, while Item‐CF and MOBFO‐CF obtain the superiority in terms
of precision and recall, respectively.

4.3 | Discussions

• The optimization performance of HFSMOBFO. The main drawback associated with the
multiobjective BFO and its variants is their less conductive convergence speed in searching
for the Pareto front. The improvement of chemotaxis process with information exchange and
hypercube fast searching strategy prove to be effective in enhancing the searching capability
of BFO. The partial reproduction and partial elimination strategy also effectively increase the
diversity of bacteria positions in BFO by creating an external archive that preserves selected
particles for the next generation and copies the nondominant solution in the current

FIGURE 6 Results for F1‐measure, diversity, novelty, and tendency on 100K movielens data set [Color figure can
be viewed at wileyonlinelibrary.com]
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population into the archive. Thus, the obtained solutions of HFSMOBFO outperforms the
other three recently proposed BFO‐based methods (MRBCO, MOCLBFO, MCMBFO).
Though MOPSO and NSGAII are two well‐known multiobjective methods which demon-
strate to be superior to most multiobjective methods, the comparison results on benchmark
problems demonstrate that the proposed HFSMOBFO still maintain the superiority in most
cases.

• The recommendation performance of HSMBFO‐CF. From the comparison results on 100k and
1M movienlens data sets, we can find that the proposed HSMBFO‐CF obtain the best
performance in most cases for six performance measures. MOBFO‐CF obtains the best
performance in terms of recall and F1‐measure on 100k data set and best recall on 1M data
set. Item‐CF gets the best in terms of precision on 1M data set. The proposed HSMBFO‐CF
has obvious advantages in providing more diverse and novel items according to user

TABLE 8 Results on 1M movielens data set

Algorithms Precision Recall F1‐measure Diversity Novelty Tendency

CBCF 50.595 66.990 57.649 86.861 563.540 75.282

Item‐CF 70.695 77.587 73.980 86.838 529.260 69.472

KNN‐CF 50.648 66.191 57.385 86.865 563.074 74.805

User‐CF 50.209 66.196 57.104 86.865 563.706 75.385

NSGAII‐CF Ave 64.776 87.592 74.475 86.853 568.460 75.253

Pre 64.313 87.655 74.190 86.815 569.651 75.311

Div 64.837 87.794 74.589 86.854 568.266 75.225

Ten 64.922 87.435 74.515 86.875 568.173 75.030

MOPSO‐CF Ave 64.226 87.618 74.117 86.822 568.282 75.406

Pre 64.252 87.374 74.048 86.815 569.766 75.375

Div 64.526 87.627 74.319 86.856 568.205 75.214

Ten 64.473 87.948 74.401 86.841 568.118 75.311

MOBFO‐CF Ave 62.396 87.444 72.824 86.877 567.529 74.845

Pre 62.477 88.534 73.255 86.868 568.430 75.164

Div 62.405 88.177 73.085 86.878 567.904 75.193

Ten 62.397 88.069 73.042 86.878 567.940 75.156

MCLBFO‐CF Ave 60.932 83.648 70.502 86.874 564.902 73.774

Pre 60.283 82.714 69.736 86.887 564.776 73.739

Div 60.291 82.728 69.747 86.887 564.779 73.749

Ten 60.291 82.728 69.747 86.887 564.779 73.749

HSMBFO‐CF Ave 64.668 87.866 74.503 87.107 570.176 75.209

Pre 64.259 88.028 74.287 87.117 570.318 75.413

Div 64.801 87.867 74.591 87.403 569.122 75.208

Ten 64.787 87.899 74.593 87.116 568.946 75.182
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individual tendency. It implies that the proposed strategy can effectively optimize other
recommendation quality factors with only slight decline in accuracy. Overall, the
optimization‐based algorithms show superior performance in recommendation applications.
Among the intelligent optimization‐based recommendation methods, HSMBFO‐CF and
MOBFO‐CF demonstrate the best optimization capability, and HSMBFO‐CF yields the most
diverse and novel solutions according to user individual tendency. Evidently, HSMBFO‐CF
demonstrates stable capability to obtain the optimal solutions effectively on large movielens
data set. Thus, it implies that incorporating heuristic optimization methods in intelligent
system design contributes to greater number of feasible solutions with adequate diversity and
novelty.

5 | CONCLUSIONS AND FUTURE WORK

This paper proposes a new multiobjective BFO methods by incorporating four strategies in the
operation process. First, the adoption of information‐oriented chemotaxis enables the information
exchange between bacteria, thus accelerates the convergence speed and avoids the disturbance of
searching for better positions. Then, the hypercube fast searching strategy for nondominated Pareto
front classifies solutions into dominated and nondominated groups, and provides a simple method to
save computational cost. The use of “virtual fitness” effectively represents the contributions of so-
lutions to each optimization objective. Lastly, the partial reproduction and partial elimination strategy
maintains the solution diversity when removing less healthy bacteria.

FIGURE 7 Results for F1‐measure, diversity, novelty, and tendency on 1M movielens data set [Color figure
can be viewed at wileyonlinelibrary.com]

GENG ET AL. | 1641

http://wileyonlinelibrary.com


Current results on real world data sets demonstrate that the proposed recommendation
method achieves good balance across different evaluation measures. From application per-
spective, this study provides an importance reference for intelligent RS design.

There are a few limitations in this study that point to our future research. First, we will
focus on incorporating user contextual information and constructing effective user feature
representation. Second, we also plan to investigate other recommendation system performance
criteria, that is, explainability, based on current study. Third, using larger real‐world data sets
can enhance the generalization of optimization‐based recommendation methods.
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