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Abstract. When addressing the multi-objective optimization, bacterial colony
optimization algorithms are easy to fall into local optimum, which leads to the
insufficient diversity and convergence. To overcome this drawback, in this study,
a new multi-objective bacterial colony optimization based on multi-subsystems,
abbreviated as MOBCOMSS, is proposed. The MOBCOMSS uses a hierarchical
clustering approach to adapt the colony into multiple sub-colony systems based on
evolutionary state. Each subsystem in the colony searches and stores information
independently. Then, the diversity and convergent information from subsystems
are returned to the elite archive for the whole colony. Besides, information suitable
for the development of diverse subsystems is extracted from the elite archive for
adaptive updating to eventually balance global and local search and achieve prob-
lem adaptation. Finally, the proposed MOBCOMSS is compared with 4 popular
algorithms in the environmental economic dispatch of power systems (EED) on the
standard IEEE 30-bus test system. The results demonstrate that MOBCOMSS can
find optimal solutionswith better convergence and diversity than other comparison
algorithms in solving the EED problem with lower computational consumption,
showing good feasibility and effectiveness.

Keywords: Multi-objective optimization · Environmental economic
dispatching · Bacterial colony optimization ·Multi-subsystem

1 Introduction

Environmental/Economic Dispatch (EED) has become an important optimization prob-
lem in power system operation with the increasing concern for environmental pollution.
According to EED, economic maintenance and pollutant emissions are both kept as
low as possible while satisfying all equality and inequality constraints [1]. Nonetheless,
minimizing total emissions and economic maintenance costs are inherently contradic-
tory, and they cannot be addressed just using traditional single-objective optimization
techniques simply due to their multiple nonlinear constraints. Therefore, it is necessary
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to transform EED problem into a multi-objective optimization problem (MOP) while
handling multiple equality and inequality constraints.

MOP means two or more contradictory goals are optimized concurrently. Moreover,
these objective functions always contradict each other. Numerous evolutionary algo-
rithms have been used to solve the multi-objective EED problem successfully, attracting
the interest ofmany scholars [1, 2].Many optimization algorithms based on bacteriawere
proposed in recent years, where the prominent examples are bacterial foraging algorithm
(BFO) [3], bacterial colony optimization (BCO) [4], slime mould algorithm (SAM) [5].
On the one hand, most bacterial algorithms could be highly efficient in solving single-
objective optimization problems for its global search ability [5, 6].On the other hand,
bacterial optimization algorithms showed adaptive behavior of intelligent emergence
facing high computational consumption and inefficient utilization of prior knowledge
in multi-objective optimization problems [3, 7]. For EED problem, Panigrahi et al. [8]
applied a fuzzy method for BFO to solve the EED problem. Tan et al. [9] proposed a
discrete BFO that used the health classification method to control the reproduction and
elimination opportunities on EED problem.

Simulation results show the effectiveness of above algorithms. However, thesemulti-
objectiveBFOalgorithms are basedon a complex three-layer nested computing structure,
effective calculations are at the cost of sacrificing a large amount of computing power. In
addition, the capability to balance global search and local search is still needed to enhance
for multi-objective BFO algorithms. The disequilibrium leads to local Pareto or even
stops convergence prematurely. The BCO further proposed a life cycle model instead of
the three-layer nested structure that enhances computing effectiveness. However, BCO
is updated and iterated with the guidance of individual bacteria which leads to trapping
into local optimal easily.

Given the above considerations, a new multi-objective bacterial colony optimization
based on multi-subsystems, abbreviated as MOBCOMSS, is developed in this paper.
The MOBCOMSS newly proposed to consider not only the behavior in the evolution-
ary structure but also multi-subsystems search strategy for enhancing the diversity of
population and avoiding trapping in local Pareto front.

2 Background

2.1 Environmental/economic Power Dispatch (EED)

EED is to find a dispatching scheme that solves for the optimal value of both objective
functions (fuel cost and pollution emissions) while satisfying the power supply-demand
balance and unit capacity constraints. The EED is a non-linear and high-dimensional
optimization problem that must also satisfy both equation and inequality constraints,
making it difficult to find a globally optimum solution using traditional gradient-based
optimization methods.

In this paper, the IEEE 6 machine 30-bus standard system is chosen for verifying the
performance of MOBCOMSS, More detailed parameters can check [9].
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2.2 Bacterial Colony Optimization (BCO)

Bacterial Colony Optimization (BCO)is a new evolutionary algorithm proposed by Niu
et al. [4] that simulates bacterial life-cycle behaviors in the swarm intelligence way.
The main improvement in BCO is the way to forage that bacterium usually towards
nutrients by exchanging information between individuals instead of randomwalks.More
information about BCO can refer to [4, 6].

3 Multi-objective Bacterial Colony Optimization Based
on Multi-subsystems

From previous multi-objective optimization algorithms based on bacteria, it seems that
there are generally problems such as insufficient population diversity and poor conver-
gence, which in turn lead to failure to obtain a good Pareto front [3, 9]. In order to
enable populations to preserve and extract information with diversity and convergence,
this paper proposes a multi-subsystem search strategy with adaptive colony behaviors.
For a specific algorithmic framework see Fig. 1 and Algorithm 1.

Fig. 1. The overall framework of MOBCOMSS.

3.1 Multi-subsystems Search Strategy

The main idea of bacterial colony optimization is to first initialize the colony Xi =
[xi1 , xi2 , . . . , xin ]T , i = 1, 2, 3, . . . ,m, and perform random foraging behavior. The
whole population is updated through continuous iteration with each bacterium updating
its position through group communication [4]. Traditional bacterial colony optimization
algorithms typically set a global optimum individual and drives the entire population
towards found global optimum [6, 9]. The global optimum oriented search allows the
algorithm to converge more quickly than a random search. Nevertheless, a single global
optimum is not necessarily effective in multi-objective optimization problems. Multi-
objective optimization is often not optimal for all objectives due to conflicts between
objectives, which drives us to explore how to obtain the information that drives the
evolution of the entire population.

Inspired by the biological swarm phenomenon of system-subsystem-individual sys-
tem, we explored the influence of multiple subsystems in a bacterial colony system and
devised a multi-subsystem search strategy. As shown in the Algorithm 1 on lines 3–10,
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the similarity of the population is calculated firstly with the metric that can be used as
positional similarity, convergent similarity relative to the origin, and diversity similarity.
The whole population is sliced by means of hierarchical clustering to obtained multiple
sub-colony systems, each of which includes multiple bacteria.

Multiple bacterial colony subsystems operate independently and an external archive
of a central information hub is designed to store the optimality search information. For
multi-objective optimization problems, diversity and convergence information is stored
in the external archive. During independent optimization searches, subsystems extract
information from the central information hub that is appropriate for the development of
that subsystem and proceeds to the next step of the adaptive optimization process until
a specified number of iterations.

Algorithm 1. Overview of MOBCOMSS
01: Input: npop; MaxFEs; learning rate α; Genetic Parameters
02: Initialization: Pop (Population)
03: while Fes MaxFEs do
04: Calculate the individual similarity with crowding distance and position;
05: Hierarchical Clustering;
06: Store non-dominated solutions to EA (External archive);
07: for each subsystem Pop do
08: for each bacterium subsystem do
09: Position updating using Eq.(1)
10: end
11: end
12: Parents selection;
13: Crossover;
14: Mutation;
15: if meet elimination condition then
16: Adaptive Elimination;
17: else
18: Continue;
19: end
20: Update the elite archive
21: end
22: Output: EA (External archive)

3.2 Improved Bacterial Colony Behaviors

The previous bacterial colony optimization had a high reliance on individual optimum
and single global optimum, which did not satisfy the requirements for diversity and con-
vergence in multi-objective optimization. To enhance the ability to improve the diversity
of the population and accelerate the convergence of the algorithm, a newupdatingmethod
is proposed as shown in Eq. (1).

xti = w · xt−1
i + Ci ·

{
r1 ·

(
xc − xt−1

i

)
+ r1 ·

(
xd − xt−1

i

)}
(1)
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where w is the initial weight, Ci represents the chemotaxis steps and the xc and xd
are convergent leaders and diversity leaders suit for each of subsystem. As shown in
lines 11–13, in order to further enhance population diversity, the proposed algorithm
introduces operations such as selection, crossover and mutation in genetic algorithms
instead of the traditional replication operations of colony optimization. Furthermore,
to avoid the population falling into a local optimum, an adaptive elimination strategy
is proposed, see lines 14–18. Adaptive elimination refers to the fact that if the current
convergent optimum stored in the central information hub does not change for a long
time which means that the whole algorithm is not further improved. If the convergence
information remains unchanged for a long time, as shown in Eq. (2), the probability of
elimination of the population is increased as the number of iterations increases.

Pedt = Pedt−1 + 0.1, if xd not changed (2)

A timer is put up in the adaptive elimination adjustment to keep track of the time it
takes for the convergence to stagnate. Whenever the counter hits a predetermined value,
the likelihood of elimination rises in lockstep with the growth in the counter. Similarly,
the eliminated bacteria are replaced to some new position.

4 Simulation Analysis

4.1 Experimental Setup

In this paper, MOBCOMSS is applied to the EED optimization problem and the energy
consumption parameters, emission parameters and loss factors of the generating units
are referred to the relevant literature [9]. In this paper, MOPSOCD [10], MMOPSO
[11], NSGAII [12], PESAII [13] are selected as comparative algorithms. The simulation
analysis is carried out for the two cases of considering network losses and not considering
network losses respectively. All experiments are carried out on a PC with Intel Core i-5
10210U@1.60GHz and 16GBmemory, windows 11 system andMatlab 2020b. Among
all comparison algorithms, the population size is set to 100 and the maximal number
of fitness evaluations (FEs) is set at 10000. All the experimental results are obtained
after 30 independent runs. In the experiments, the Hypervolume (HV) [14] and Spread
[15] metric are used to evaluate the optimization performance of the algorithm, and the
reference point for HV is set as [1.1,1.1,…,1.1]d .

4.2 Results and Analysis

Table 1 gives the best solutions for economic cost in case 1 and case 2 obtained by diverse
algorithms. The proposed MOBCOMSS and the MMOPSO get the minimum value of
economic cost is 605.9984 ($/h), significantly better than other algorithms. As shown
in Table 1, The proposed MOBCOMSS gets the minimum value of economic cost is
605.9984 ($/h) while other algorithms getting results above it, which means the MOB-
COMSS ismuch better than other algorithms. Table 2 gives the best solutions for environ-
mental emission in case 1 and case 2 by selected algorithms. From Table 2, the minimum
value of case 1 emissions obtained by the proposedMOBCOMSS is 0.194180 (t/h),while
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the minimum values of that obtained by MOPSOCD, MMOPSO, NSGAII, PESAII are
higher than that of MOBCOMSS. Table 2 shows that MOBCOMSS, MMOPSO and
NSGAII reach 0.194179 simultaneously in case 2. However, the proposed algorithm
outperforms other algorithms in terms of emission at higher precision.

Table 1. Best solutions for cost ($/h) in case 1/2. (30 trials).

Methods Case P1 P2 P3 P4 P5 P6 Cost Emission

MOBCOMSS C1 0.121165 0.286481 0.583648 0.992943 0.523379 0.351946 605.9984 0.220724

C2 0.120808 0.286384 0.583565 0.992423 0.524187 0.352195 605.9984 0.220702

MOPSOCD C1 0.114755 0.288016 0.590255 0.988176 0.525345 0.352914 606.0074 0.220654

C2 0.118497 0.288106 0.582691 0.988334 0.526146 0.35583 606.0028 0.22043

MMOPSO C1 0.121026 0.286232 0.584042 0.992663 0.523847 0.351736 605.9984 0.220722

C2 0.121004 0.286407 0.583672 0.9929 0.523653 0.351926 605.9984 0.220729

NSGAII C1 0.121191 0.283844 0.58349 0.994651 0.526673 0.349685 606.0002 0.220925

C2 0.121343 0.284665 0.583159 0.992522 0.525649 0.352203 605.9989 0.220723

PESAII C1 0.125551 0.288536 0.583595 0.988879 0.523704 0.349215 606.0034 0.22031

C2 0.122422 0.286405 0.584904 0.991566 0.51855 0.355684 606.0016 0.220542

Table 2. Best solutions for emission (ton/h) in case 1/2. (30 trials).

Methods Case P1 P2 P3 P4 P5 P6 Cost Emission

MOBCOMSS C1 0.411291 0.465579 0.543524 0.390158 0.54634 0.512457 646.2336 0.19418

C2 0.410987 0.461506 0.543599 0.391264 0.546415 0.51553 646.0564 0.194179

MOPSOCD C1 0.404013 0.466756 0.546965 0.392052 0.540709 0.518472 645.8045 0.194184

C2 0.410904 0.466762 0.537149 0.395849 0.54337 0.515441 645.9386 0.194183

MMOPSO C1 0.413928 0.464214 0.546861 0.391304 0.53896 0.514232 646.3356 0.194181

C2 0.410271 0.464083 0.545808 0.388842 0.546933 0.513304 646.2185 0.194179

NSGAII C1 0.412433 0.462986 0.543986 0.392253 0.546065 0.511635 646.0202 0.19418

C2 0.411563 0.461548 0.546942 0.389859 0.545276 0.514091 646.1526 0.194179

PESAII C1 0.409714 0.45389 0.555662 0.388831 0.548949 0.511831 645.6954 0.194193

C2 0.413379 0.459561 0.553073 0.389989 0.539954 0.513335 646.16 0.194185

To demonstrate further the distribution of solutions on the obtained Pareto front,
Fig. 2 displays the graphical results produced by the MOBCOMSS algorithm and other
four algorithms for case 1 and case 2. At the same time, the hypervolume HV and Spread
are applied to measure the performance of algorithm. As shown in Fig. 2, the Pareto
front obtained by MMOPSO on case 1/2, MOPSOCD on case 1, NSGAII on case 1 and
PESAII on case 1/2 can be seen to be unevenly distributed, with vacant Pareto fronts.
In addition, the Pareto front of MOPSOCD on case 2, NSGAII on case 2 and PESAII
on case 1/2 have overlapping solutions. In contrast, the pareto fronts obtained by the
proposed MOBCOMSS on case 1 and case 2 are smoother and more uniform, with a
wider distribution and no overlapping solutions.
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From Table 3, the proposed MOBCOMSS is able to achieve the highest HV value
compared to the other algorithms in Case 1 and Case 2, respectively, and Table 4 shows
that the lowest Spread value can be achieved for the diversity metric, which proves the
effectiveness of the proposed algorithm in improving diversity as well as convergence.

Table 3. Statistical results of the metrics HV for Case 1/2 (30 trials).

HV Case Best Worst Median Average STD

MOBCOMSS C1 0.128396 0.128356 0.128387 0.128385 8.03E-06

C2 0.128394 0.128355 0.12839 0.128387 8.38E-06

MOPSOCD C1 0.128371 0.128327 0.128354 0.128352 1.16E-05

C2 0.12837 0.128296 0.128351 0.128347 2.01E-05

MMOPSO C1 0.128391 0.128366 0.128387 0.128384 7.65E-06

C2 0.128394 0.128372 0.128388 0.128387 5.25E-06

NSGAII C1 0.128385 0.128366 0.128379 0.128378 5.38E-06

C2 0.128386 0.12837 0.128379 0.128378 4.34E-06

PESAII C1 0.128348 0.128157 0.128311 0.128306 4.14E-05

C2 0.128352 0.128169 0.128304 0.128292 5.07E-05

Table 4. Statistical results of the metrics Spread for Case 1/2 (30 trials).

HV Case Best Worst Median Average STD

MOBCOMSS C1 0.555919 0.665939 0.627925 0.620376 3.03E-02

C2 0.548758 0.670397 0.619972 0.621405 3.07E-02

MOPSOCD C1 0.607426 0.757483 0.694027 0.69153 3.63E-02

C2 0.597029 0.776177 0.684779 0.682769 0.045266

MMOPSO C1 0.548858 0.714839 0.652339 0.651771 4.77E-02

C2 0.515596 0.750139 0.652181 0.650466 0.049113

NSGAII C1 0.568894 0.792423 0.689091 0.694539 5.33E-02

C2 0.632373 0.840626 0.705666 0.712683 0.044622

PESAII C1 0.887064 1.133629 0.997456 0.987289 5.25E-02

C2 0.744185 1.169833 0.927624 0.940232 0.079911
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Fig. 2. Pareto solutions produced by five methods for case1 and case2
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Fig. 2. continued

5 Conclusion

In this paper, a novel multi-objective bacterial colony optimization based on multi-
subsystem (MOBCOMSS) is proposed and used to solve the EED problem. The MOB-
COMSS proposed a multi-subsystem search strategy, which enhances the population
diversity and multi-objective optimization adaptability during algorithm execution pro-
cess. Furthermore, the MOBCOMSS proposed an adaptive pattern of bacterial colony
behavior to accelerate the convergence of the algorithm and avoid falling into local
optimum. Finally, the simulation is validated in two cases considering transport losses
and not. The simulation results show that the proposed MOBCOMSS has good perfor-
mance and the Pareto frontier obtained with limited computational power is uniformly
distributed.
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