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Abstract

The information transfer mechanism within the population is an essential factor for

population-based multiobjective optimization algorithms. An efficient leader selection

strategy can effectively help the population to approach the true Pareto front. How-

ever, traditional population-based multiobjective optimization algorithms are

restricted to a single global leader and cannot transfer information efficiently. To

overcome those limitations, in this paper, a multiobjective bacterial colony optimiza-

tion with dynamic multi-leader co-evolution (MBCO/DML) is proposed, and a novel

information transfer mechanism is developed within the group for adaptive evolu-

tion. Specifically, to enhance convergence and diversity, a multi-leaders learning

mechanism is designed based on a dynamically evolving elite archive via direction-

based hierarchical clustering. Finally, adaptive bacterial elimination is proposed to

enable bacteria to escape from the local Pareto front according to convergence sta-

tus. The results of numerical experiments show the superiority of the proposed algo-

rithm in comparison with related population-based multiobjective optimization

algorithms on 24 frequently used benchmarks. This paper demonstrates the effec-

tiveness of our dynamic leader selection in information transfer for improving both

convergence and diversity to solve multiobjective optimization problems, which plays

a significant role in information transfer of population evolution. Furthermore, we

confirm the validity of the co-evolution framework to the bacterial-based optimiza-

tion algorithm, greatly enhancing the searching capability for bacterial colony.
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bacterial colony optimization, dynamic multi-leader learning, elite co-evolution, evolutionary

direction, hierarchical clustering, population-based multiobjective optimization

1 | INTRODUCTION

Many applications in real life often contain multiple objectives to be optimized simultaneously such as in the fields of intelligent manufacture sys-

tems, environment energy systems, financial and management science, and so forth, which are termed multiobjective optimization problems

(MOPs) (Liu et al., 2022; Ma et al., 2023; Morteza et al., 2023; Nunes et al., 2023; Yazdani et al., 2023). For example, the portfolio optimization

problem is to minimize the risk and maximize the return (Morteza et al., 2023). In the routing planning problem, along with the goal of shortest

route distance, it is also vital to consider cost, safety, and risk (Nunes et al., 2023). Frequently, multiple objectives in MOPs are contradictory to

each other. Thus, MOPs are usually solved by finding a set of trade-off solutions known as the Pareto optimal set rather than a unique global opti-

mal solution.
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Compared to the single objective optimization problem, MOPs are more challenging in terms of computational complexity, conver-

gence difficulties, the balance between the convergence and diversity of Pareto solutions, and so forth. Since population-based meta-

heuristic can produce a set of Pareto optimal solutions in a single run, they are more suitable for solving the complex MOPs. Those

population-based multiobjective optimization algorithms, for example, multiobjective particle swarm optimization (MOPSO) (Aboud

et al., 2022; Liu et al., 2019), multiobjective ant colony optimization (MOACO) (Li et al., 2022; Zhang et al., 2021), non-dominated sorting

genetic algorithm (NSGAII) (Deb, Agrawal, et al., 2002), and multiobjective differential evolution (Liao et al., 2023), have excellent global

search capabilities, primarily in identifying key knowledge in generations, designing efficient learning methods, and incorporating some

heuristics to explore potential subspaces and ultimately achieving global optimization. More specifically, the population-based algorithms

operate on a population of solutions, called individuals. The information transfer mechanism among the individuals is an essential factor

for population-based multiobjective optimization algorithms to achieve better solutions iteratively, for example, the interaction between

individual and the global optimal (Lin et al., 2018; Pereira & Gomes, 2023), the topology exchanges among the whole population (Niu

et al., 2018; Niu, Liu, & Tan, 2019).

Though population-based multiobjective algorithms have excellent global search capabilities that naturally have the advantage of tackling

MOPs, there are still several challenges during implementations. On the one hand, it is known that an efficient population-based multiobjective

algorithm needs to design rational mechanisms to transfer the historic knowledge from the individuals for the movement of the remaining popula-

tion. Generally, it is required to select a global best for updating and reproducing the next circulation in a population-based algorithm (He

et al., 2022; Tan et al., 2017; Zhang et al., 2019). Prior knowledge acts as an intermediary in the group and plays a role in directing the group

towards the potential space. Even so, it is not that easy to design a rational and efficient information transfer mechanism within the group (Wu

et al., 2019; Zhang et al., 2019). The main challenge is to specify if it is the personal best or the global best for the whole population since it is dif-

ficult to select an absolute optimum for the MOPs with conflicting goals. Applying the idea of multi-population for multiobjective is a potential

solution for this issue (Li et al., 2022; Yang et al., 2022). The multi-population mechanism not only reduces computation complexity by assigning

each subpopulation with a relatively easier subtask, but it is also capable of improving overall robustness of the entire population to avoid trapping

in local Pareto optimal (Antonio & Coello, 2018). On the other hand, the balance between the convergence and diversity in the population is a

tough challenge throughout the entire optimization process (Gu et al., 2023; Yang et al., 2023). Fast convergence with the cost of rapid loss of

diversity may result in the evolution trapping in the local optimum. Thus, selecting an appropriate evolutionary direction, that is, selecting appro-

priate leaders for each individual in population, as well as the strategy for controlling the balance between convergence and diversity are the key

aspects for applying population-based optimization methods to the MOPs. Informed by these two motivations, we endeavour to select the most

suitable multiple leaders, that is, the convergence leader and the diversity leader, in dynamic subpopulations in order to achieve a balance

between convergence and diversity in MOPs.

Bacterial-based optimization is a type of novel population-based algorithm, which simulates the foraging behaviours and life-cycle of bacterial

colony (Niu & Wang, 2012; Passino, 2012). First, as one of the oldest species, the survival of bacteria demonstrates a great capacity for optimiza-

tion. The simple and accessible bionic mechanisms make it easy to grasp the optimization mechanism. Second, different from the existing

population-based optimization algorithms, bacterial-based optimization itself has excellent adaptive operators, that is, the elimination process can

help the whole population jump out of the difficult space and avoid trapping in stagnation long time. Lastly, due to its explicit global search and

local search mechanisms, we can easily extend this optimization structure to match different engineering problems. Benefit to the excellent global

search capability and simple bionic structure, bacterial-based optimization algorithms have been widely studied and successfully applied in many

multiobjective optimization engineering fields (Guo, Tang, Niu, & Lee, 2021). As a population-based algorithm, the main effort of the multi-

objective bacterial-based optimization algorithms (MOBAs) is to find out the most advanced prior information within the group to guide the

updating of the entire population. To the best of our knowledge, the searching structure improvements (Niu et al., 2018; Niu, Liu, & Tan, 2019),

learning strategies (Niu, Yi, et al., 2019; Tan et al., 2017), and searching efficiency improvements (Guo, Tang, & Niu, 2021; Niu et al., 2020) are

most widely investigated to improve the efficiency of the MOBAs. Though existing versions can enhance the performance of MOBAs in tackling

the MOPs to a certain extent, inefficient transfer mechanisms of prior information, low robustness of leader selection mechanism, inappropriate

use of external archival technology, and imbalance between convergence and diversity are prevalent in extant MOBAs.

Thus, in this study, we propose a novel multiobjective bacterial-based optimization algorithm, named multiobjective bacterial colony optimiza-

tion with dynamic multi-leader co-evolution algorithm (abbreviated as MBCO/DML), to solve the above-mentioned problems. First, to avoid the

low robustness caused by conventional single global best guidance, an efficient information transfer mechanism is proposed, that is, selecting

appropriate diversity and convergence leaders in dynamic subpopulations. Our strategy dynamically divides the entire population into subpopula-

tions according to evolutionary status during generations. Each subpopulation can maintain and retain the prior information suitable for them

instead of sharing global best. Meanwhile, the balance of convergence and diversity can be achieved by learning from convergence and diversity

leaders. Moreover, to accelerate the optimization process and avoid trapping into local Pareto optimal, the elite archive is also capable in evolving

independently. The global information is stored in an elite archive and shared with each subpopulation, which ensures communication among sub-

populations. The main contributions of this study are as follows.
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• We propose a novel multiobjective bacterial colony optimization framework that a co-evolution framework is constructed and an adaptive

evolutionary path is designed, which provides a new information transfer mechanism for population-based multiobjective optimization

algorithms.

• The dynamic multi-leader learning mechanism driven by a direction-based hierarchical clustering algorithm is proposed to guide the whole bac-

terial colony. Each dynamic subpopulation can independently choose the best evolutionary direction that suits them and ultimately obtain bet-

ter convergence and diversity performance.

• An elite archive evolution strategy is effectively integrated into the evolution process. We confirm the validity of the co-evolution framework

to the bacterial-based optimization algorithm, not only greatly enhancing the searching capability for bacterial colony, but also can speed up

the optimization process.

The reminder of this paper is organized as follows. Section 2 briefly describes the background of MOPs, and the state-of-art multiobjective

bacterial-based optimization algorithms. Next, the MBCO/DML is introduced in Section 3. In Sections 4 and 5, the comparison experiments on

benchmarks are conducted, followed by an analysis of results obtained. Finally, the conclusions and future work are shown in Section 6.

2 | RELATED WORK

The relevant theories will be carefully examined and presented in this section. To begin with, the theory of MOPs and Pareto optimal will be

briefly introduced. Next, since the proposed MBCO/DML is based on bacterial intelligent behaviours, some bacterial based optimization works

will also be reviewed.

2.1 | MOPs and Pareto optimal

Mathematically, a MOP can be defined as follow.

Minimize F xð Þ¼ f1 xð Þ, f2 xð Þ, f3 xð Þ,…, fm xð Þð Þ
Subject to gi xð Þ≤0, i¼1,2,3,…,q,

ð1Þ

where, x is a n-dimensional decision variable. The objective function F(x) includes m objectives constrained by q constraint conditions g(x). In gen-

eral, it is difficult to obtain the optimal solution for each objective simultaneously. A solution may be optimal in one objective, but may not be

superior in other objectives, which determines that the MOP is pursuing compromise solutions instead of just a certain optimal solution.

It is supposed that the optimization problem is a minimization problem. An objective value vector F uð Þ¼ f1 uð Þ, f2 uð Þ,…, fm uð Þð Þ is said to domi-

nate to another F vð Þ¼ f1 vð Þ, f2 vð Þ,…, fm vð Þð Þ if and only if fi uð Þ≤ fi vð Þ,8i� 1,2,…,mf g and fj uð Þ< fj vð Þ,9j� 1,2,…,mf g, denoted as F uð Þ≺ F vð Þ. When

an objective value vector is not dominated by any others, its decision variable is called as a non-dominance solution, also known as Pareto opti-

mality. For example, if no feasible solution x0 can be found to satisfy F xð Þ≺ F x0ð Þ, the feasible solution x is called as a Pareto optimality.

2.2 | Bacterial colony optimization

Bacterial Colony Optimization (BCO) is proposed by Niu and Wang (2012) to alleviate the computational complexity as well as low convergence

speed in the earliest bacterial-based optimization algorithms (e.g., Bacterial Foraging Optimization (Passino, 2012), Bacteria Chemotaxis (Muller

et al., 2002)) by replacing the original triple nested loop structure to parallel structure.

As is shown in Figure 1, all parts of the bacterial behaviours in BCO are designed into a parallel structure and distributed throughout the opti-

mization process, which simplifies the process of colony optimization. The other behaviours, such as elimination, reproduction and migration, can

only be implemented if the given conditions are met. BCO with its unique and adaptive biological behaviours ensure that the colony can search

for excellent solutions from a global perspective. This is especially suitable for complex optimization problems such as high-dimensional, multi-

modal, non-linear and multi-constrained characteristics.

Except for the improvements in life-cycle structure, in BCO, the convergence strategy is designed based on adopting topology communica-

tion structures, like dynamic neighbour-oriented learning and group-oriented learning. Two strategies are also designed in the chemotaxis process

to assume the role of optimization consisting of swimming and tumbling. To be specific, the current position is decided by the previous position

and the advanced group experience is generated by the global best and individual history experience provided by the personal best. The swim-

ming process can be described as follows.
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Swimming:

pi ¼ piþ ri gbest�pið Þþ 1� rið Þ pbesti�pið Þ, ð2Þ

where, pi is the position of the ith iteration; the gbest and pbesti represent the global best within the population and the personal history best of

the ith bacterium, respectively; the ri is the randomly generated learning rate for the ith bacterium.

Compared to swimming, the tumbling process includes an additional randomness operation to avoid trapping into local optimum and prema-

ture. Tumbling process can be described as follows.

Tumbling:

pi ¼ piþ ri gbest�pið Þþ 1� rið Þ pbesti�pið ÞþCi
Δiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δi
T �Δi

p , ð3Þ

where, Ci represents the chemotaxis step size of ith bacterium; Δi is the direction angle of the ith individual generated in [�1, 1] randomly.

2.3 | Multiobjective bacterial-based optimization algorithms

Bacterial-based optimization algorithms have been extensively studied and extended to the multiobjective optimization field (Kaur &

Kadam, 2018; Srichandan et al., 2018). Niu et al. (2013) first proposed a multiobjective bacterial foraging optimization (MBFO). They first vali-

dated that there is a great potential of applying BFO in MOPs. In MBFO, the Pareto dominance relationship and the external archive technique

were first employed in conventional BFO structures, whose simulation results show that MBFO can find a much better spread of Pareto solutions

and converge faster than other classical algorithms. To speed up the convergence rate, a comprehensive learning strategy is embedded in MBFO-

cl proposed by Tan et al. (2017) to enable the communication exchanges between the bacteria and external archive. In Yi et al. (2016) proposed

an enhanced MOBFO, in which parallel cell entropy was introduced to evaluate the evolutionary status of the Pareto solutions and an adaptive

foraging strategy was applied to balance the convergence and diversity in the optimization procedure. Niu, Liu, and Tan (2019) proposed a multi-

swarm cooperative multiobjective bacterial foraging algorithm (MCMBFO), which aims to accelerate the bacterial colony convergence rate by

cooperation. Even the simulation results from MOBFO and MCMBFO illustrated a good performance in terms of converging to the true Pareto

front, the nested loop structure was still applied in these two methods, which undoubtedly slowed down the convergence speed.

To alleviate the high-computing complexity of the standard BFO algorithm, Niu et al. (2020) redesigned the nested loop structure to a single

life cycle and incorporated the ring topology search to propose a multiobjective bacterial colony optimization (abbreviated as MORBCO).

MORBCO involves global chemotaxis operation, elite reproduction strategy and personal best archive with neighbourhood communication mech-

anism, which enhanced the local search capability of MORBCO. In Niu, Yi, et al. (2019), similar learning paradigms, including elite learning, star

topology learning, ring topology learning and Von Neumann topology learning, are compared with each other and exploited in multiobjective fea-

ture selection tasks, in which experimental results demonstrated that enhanced learning strategies can improve the convergence speed and avoid

F IGURE 1 The framework of BCO.
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premature to some extent. For both MCMBFO (Niu, Liu, & Tan, 2019) and MORBCO (Niu et al., 2020), topological communication is employed as

the main information transfer path can improve search efficiency to some extent but they neglect to identify what important information should

be restored and transferred within the population for tackling MOPs. In Dhillon et al. (2016) and Wang and Cai (2018), PSO-like single global best

learning paradigm was also combined with BFO to solve MOPs and applied to the load frequency control problem and crashworthiness optimiza-

tion of vehicle body respectively. Guo, Tang, and Niu (2021) proposed an evolutionary state-based novel multiobjective periodic bacterial foraging

optimization algorithm, named ES-NMPBFO. In ES-NMPBFO, all bacteria can adjust the direction of learning from a global leader and use a peri-

odic learning structure that can save most of the computation resources. Although ES-NMPBFO identifies the evolutionary status to adjust the

global leader can enhance the adaptive of the population, the single global best information transfer mechanism still performs not well in the bal-

ance of convergence and diversity and is easily trapped into the local optimal. From the above-mentioned literature, we believe that the leader

selection strategy and key information identification and transfer in the population are decisive factors affecting the optimization efficiency.

The above-mentioned MOBAs confirm the potential of the bacterial-based optimization algorithm for multiobjective optimization. However,

there are some drawbacks associated with existing MOBAs. They select their learning object randomly and exhibit blind reliance on a single global

leader with low robustness. As a class of swarm intelligence, little attention has been paid to identifying key prior information in the population

and designing a reasonable and effective information transfer mechanism within the group for MOBAs tackling MOPs.

Thus, in this study, a multiobjective bacterial colony optimization with dynamic multileader co-evolution algorithm (MBCO/DML) is pres-

ented, which further improves the capability of convergence and diversity, and overcomes the imbalance between them with the help of effective

information transfer mechanism, robust leader selection strategy and adaptive co-evolution technique.

3 | THE PROPOSED METHODOLOGY

In this section, an improved multiobjective bacterial colony optimization, abbreviated as MBCO/DML, is proposed to enhance the tradeoff

between diversity and convergence. The overall framework of the proposed algorithm is shown in Figure 2.

Specifically, clustering-based dynamic multi-leaders selection mechanism is designed to select the convergence leaders and diversity leaders

which can guide the conductive searching of the optimum. An elite archive is designed to store the nondominated solutions which will be used to

F IGURE 2 The overall framework of the proposed MBCO/DML.
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form the final Pareto set. Different from other archives with a storage function only, the proposed MBCO/DML extracts all nondominated solu-

tions from the current population to form an archive that will evolve independently using parents-selection, simulated binary crossover (SBX) and

polynomial mutation. Additionally, an adaptive elimination paradigm embedded in the bacterial learning behaviour is developed to improve optimi-

zation efficiency and avoid trapping in local optimum. The key components of the proposed MBCO/DML are illustrated in detail in the following

sections.

3.1 | Clustering-based dynamic multi-leader learning strategy

For most multiobjective bacterial-based optimization algorithms, the entire population is guided by a global optimum. However, if all individuals

are guided in their evolution by only a global optimum, as shown in Figure 3a, we can find that the whole population can easily trap in local opti-

mum and perform badly on diversity. The main task of MOP is to obtain solutions as many and as varied as possible. Thus, relying solely on a sin-

gle global optimum to guide the movement of the entire population is inefficient and inconsistent with the reality of multiobjective optimization.

In the proposed MBCO/DML, the diversity and convergence of the population are fully considered in leadership selection. As shown in

Figure 3b, the dynamic multi-leader selection mechanism is implemented by clustering the whole population into subpopulations, and the diver-

sity leader and convergence leader are produced in each subpopulation to guide the conductive searching of remaining individuals. During the

evolutionary process, each subpopulation is not stationary. The subpopulations can find their proper leader and evolution direction in a relatively

small searching space by separating the population into a certain number of clusters using a hierarchical clustering method. Specifically, the simi-

larity between pairs of bacteria in the population will be calculated according to the direction difference. Two most similar bacteria will be com-

bined, and that combination will be conducted repeatedly until a cluster tree is produced. The bacterial colony is therefore separated into several

clusters, that is, subpopulations. For each bacterial cluster, a convergence leader cleader and a diversity leader dleader are generated according to

convergence and diversity measurements. The cleader represents the bacterium with the best convergence evaluation in each bacterial cluster,

while the dleader indicates the one with the best diversity metric. The prior knowledge of the convergence and diversity are therefore exploited

to promote the overall performance of subgroups in handling the MOPs.

For a MOP, the solution scale of each objective dimension is not at the same level. This imbalance brings some inconvenience to the calcula-

tion process and bias to the optimization objective. Therefore, the normalization operation is required to be executed at the beginning of each

iteration, which is usually a compression according to the current obtained optimal and worst solutions. Moreover, the ideal point is not usually

easy to obtain during the optimization process but it is an important indicator to define evolutionary status that can be employed to guide popula-

tion evolution. The superior point z� ¼ z�1,z
�
2,…,z

�
m

� �
of a MOP is defined by the minimum value of each objective dimension, where

z�j ¼ minp � Sfj pð Þ, j¼1,2,…,m, p is the individual of the whole population P. Correspondingly, the inferior point z- ¼ z-1,z
-
2,…,z

-
m

� �
can be calculated

F IGURE 3 Two types of evolution models for Pareto solutions. In (a) subfigure, the red dot represents the global optimum and the grey
pentagrams indicate the set of possible Pareto solutions after learning evolution. In (b) subfigure, there are several leaders for different
subpopulations to guide evolution, which reproduce more diverse Pareto solutions.
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by z-j ¼ maxp � Sfj pð Þ, j¼1,2,…,m. Thus, the objective space can be normalized by Equation (4) according to the superior point and the inferior

point. After normalization, the superior point is further employed for leader selection and elimination.

fj
0 pð Þ¼ fj pð Þ� z�j

z�j � z�j
� 0,1½ �: ð4Þ

To acquire bacterial colonies with similar evolutionary status, unlike the previous metric employing distance, the evolutionary direction is used

to quantify similarity between bacteria and assign high similarity colonies to the same group. As is shown in Figure 4, if the position of bacterium

a is kept constant and bacterium b is moved away from the origin of the coordinate axis in the original direction, then the cosine distance remains

the same at this time because the movement direction and angle remain the same. In contrast, when the positions of bacteria a and c are changed,

the Euclidean distance between two bacteria are keep changing. Therefore, the Euclidean distance measures the absolute distance between two

points directly related to the coordinates of the location of each point, while the cosine distance measures the angle of the space vector, which is

reflected in the direction difference rather than the location difference.

The pseudocode of the dynamic multi-leader selection mechanism is presented in Algorithm 1, which consists of two steps: (1) normalization

and clustering and (2) leader selection.

1. Normalization and clustering

The input of dynamic multi-leader selection is Population P, Elite archive EA, predefined clustered number cluNum. It is noted that the elite

archive is extracted from the whole population by dominant relationships. After dynamic multi-leader selection, we can get the convergence

leader cleaderc and diversity leader dleaderc in each bacterial cluster, which represent the most suitable learning object for individuals in terms of

diversity and convergence. In lines 1–2, P and EA are combined to get the union population U and obtain the best value of each objective z* and

the worst one z �. After union, all individuals in U are normalized to [0, 1] by Equation (4) to get a new normalized population norP (line 3). Then,

cosine similarity is applied to measure the directional similarity of every two bacteria in norP, getting the similarity measure cosSim(a, b) using

Equation (5) that represents the cosine value of two bacteria (lines 4–8).

cosSim a,bð Þ¼

Pm
j¼1

ajbjffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1

aj2
s ffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1
bj

2

s : ð5Þ

It is noted that the more similar the directions of the two vectors are, the angle of two vectors is, and the cosine value is closer to zero. Based on the

hierarchical clustering method, as seen in Figure 5, the entire population is clustered into several subpopulation according to their directions. No matter

whether it is searching population or elite archive, they are assigned with cluster labels showing that they have the same evolutionary direction (line 9).

F IGURE 4 Comparison of cosine similarity and Euclidean distance.
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2. Leaders selection

The convergence leaders and diversity leaders are selected to provide the guidance for population evolution. During the optimization process,

the minimum distance between the population and the ideal point of a MOP will decrease steadily when the population is continuously evolution-

ary (Wu et al., 2019). To simulate the leaders with better convergence, the Euclidean distance of the whole population to the ideal point is repre-

sented as the convergence degree of individuals which can be calculated by Equation (6).

Algorithm 1 Dynamic multi-leader selection mechanism.

F IGURE 5 Direction-based population hierarchical clustering.
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ConvDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

pi,j�Oj

� �2vuut , ð6Þ

where, O represents the normalized ideal point with m dimensions (lines 10–12). Moreover, to obtain some diversity leaders, the crowding dis-

tance (Deb, Agrawal, et al., 2002) is applied to represent the diversity degree of every individual. Diversity can be calculated by Equation (7). The

larger values of the crowding distance mean the better performance in diversity since the smaller values indicate that the solutions with higher

concentration are obtained (lines 13–16).

CrowDi ¼
Xm
j¼1

fj
0 piþ1,j

� �� fj
0 pi�1,j

� �
z�j � z�j

 !
, ð7Þ

where, CrowDi is the crowding distance of the ith bacterium after the whole population being sorted according to each objective function value in

ascending order and that the boundary solutions have two times the maximum crowding distance. After that, according to Equation (8), the indi-

vidual with the minimum distance to the ideal point in the cth bacterial cluster, clustersc, is defined as a convergence leader for corresponding indi-

viduals in clustersc.

cleaderc ¼ min
pj � clustersc

ConvDj

� �
: ð8Þ

Additionally, the individual with the maximum crowding distance in the cth bacterial cluster, clustersc, is selected as a diversity leader for this

subpopulation by Equation (9) (lines 17–20).

dleaderc ¼ max
pj � clustersc

CrowDj

� �
: ð9Þ

Through the multi-leader selection mechanism, cleader and dleader are selected respectively to increase the convergence and diversity of bac-

terial colony for solving MOPs. Correspondingly, single optimal direction search behaviours are modified to multi-leader directions that represent

the balance of convergence and diversity. The modified multi-leader bacterial colony learning behaviours mainly reflect in swimming processes. In

addition, to avoid trapping into local Pareto optimal, the elimination behaviour is modified to adaptive change according to convergence status of

population instead a fixed frequency.

Swimming and tumbling: The bacterial positions are updated through swimming process using an initial weight ω and a stochastic tumbling

operator according Equation (10).

pi ¼ωpiþCi �Tumblec, ð10Þ

where, Ci is a random chemotaxis step size for the ith bacterium in each bacterial cluster. The stochastic tumbling operation is realized under guid-

ance of the convergence leader and diversity leader by Equation (11).

Tumblec ¼ rcon cleaderc�pið Þþ rdiv dleaderc�pið Þ, ð11Þ

where both rcon and rdiv are the learning rates towards convergence direction and diversity direction, respectively.

Elimination: An adaptive elimination is implemented to avoid trapping into the local Pareto optimal. The counter is used to record the times

that the bacterial colony cannot search for a better position. The minH records the historical minimum distance to the ideal point. When minH is

unchanged or smaller than the current minimum distance to the ideal point minC, the counter will be increased by a unit. Otherwise, it will be reset

to zero and the minH is replaced by minC. If the counter is larger than three, the bacteria will be eliminated with a probability Ped which is gener-

ated by Equation (12) with a trajectory shown as Figure 6.

Ped¼�2counter�1þ1 counter ≥ 3: ð12Þ

From Equation (12) and Figure 6, we can see that the trajectory of elimination probability is an incremental trend, which is equipped with the

ability to adjust elimination probability according to counter value.

WANG ET AL. 9 of 26
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3.2 | Elite archive evolution

It is a characteristic of population-based intelligent optimization algorithms to update the individuals' positions using historic knowledge. The indi-

viduals with the relatively optimal positions are kept in elite archive. As a result, there is an overlap between the elite archive and population. This

overlap cannot pose a progress in evolution by only learning from elite archive. It is more likely to get another relatively optimal space by adding a

randomly searching factor. Therefore, to further improve exploration capability, the elite individuals are designed to have the ability of randomly

evolution without learning from others. This coevolution model not only enables the elites to further improve the quality, but also gives more ran-

dom choices to avoid getting trapped into local optimum.

The elite archive evolution is made up of three parts, including elite duplication for matching, crossover and mutation, elite archive updating.

The pseudocode of elite archive evolution is provided in Algorithm 2.

1. Elite duplication for matching.

Considering that the number of the elite archive may be at a low level for effective selection and crossover operations, a control operation of

elite duplication is applied and the matching pool MP is set for storing all elites for parent selection. If the number of the elite archive is less than

one-eighth of the population, the elite archive will not evolve (lines 1–2). If up to one-eighth of N but less than one-fifth, all individuals in the elite

archive will be duplicated to the number of N by Equation (13).

duplicatedNumi ¼ N
CrowDiP

pi � EA
CrowDi

2
6666

3
7777, ð13Þ

where, •d e is the ceiling operator. In this case, the crowding distance of EA is calculated by Equation (7) at first (line 5). Next, each elite individual

is duplicated to a certain number according to crowding distance and the total number of members in matching pool is expanded to N. The better

the diversity, the greater is the value. By Equation (13), individuals with better diversity performance are correspondingly replicated to a greater

number by the ratio of crowding distance, which makes it generated more offspring (line 6). All members of the elite are copied to the N with a dif-

ferent number and added to the matching pool MP (line 7). When the number of the elite archive exceeds one-fifth of the population size N, indi-

viduals in the elite archive will be selectively copied and added to the matching pool instead of operating on all elite individuals. The crowding

distance of all members are calculated and sorted in ascending order, and individuals with higher diversity in one-fifth of the total population N are

repeated by Equation (13). Finally, all duplicated individuals are added into the matching pool for parent selection (lines 10–15). Next, all members

in matching poolMP are set one parent, which ensures that the elite individuals in the matching pool all have a chance to produce their offspring.

2. Crossover and mutation.

The spouses are selected from MP randomly for subsequence crossover (line 18). The function SBX(p1, p2), the simulated binary crossover,

means that two selected parents exchange coding components with a certain rule. In SBX, η is a predefined parameter. The higher the value of η,

F IGURE 6 The trajectory of elimination probability.
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the higher is the probability that the offspring produced that will be close to the parent. Two groups of offspring are produced after SBX and only

half of them μ are chosen randomly into the mutation operator (line 19). To avoid two parents being selected as the same individual and generat-

ing invalid offspring, the polynomial mutation PM is performed after SBX, generating a new offspring v that would be added into offspring (lines

20–21). It is noted that not only the algorithms for crossover and mutation are not limited to the two mentioned above, but other forms of evolu-

tionary operators can also be chosen.

3. Elite archive updating.

Finally, the function updatingEA(EA, offspring) indicates that an elite archive EA incorporated offspring is updated according to crowding dis-

tance. In the archive updating, all dominating solutions are removed. Besides, the individuals with higher crowding distance, that is, worse diver-

sity, are deleted one by one when the number of the elite archive exceeds maximum capacity. A new elite archive is returned to the next

optimization process (line 23).

In this way, the elite archive is evolved based on the genetic idea, which explores more potential space. Different from conventional

population-based optimization that the elite ones produced by search population solely, elite archive evolution further improves the diversity of

the whole population and avoids trapping into local optimum due to overlap with search population.

3.3 | Multiobjective bacterial colony optimization with dynamic multi-leader co-evolution

The pseudocode of overall MBCO/DML is presented as Algorithm 3. After initialization, the proposed MBCO/DML starts the loop of evolution until

it meets the maximum evaluation number (lines 1–29). First, the elite archive evolution strategy is executed with Algorithm 2 and the elite archive is

updated (lines 1–2). Then, running a dynamic multi-leader selection mechanism produces convergence leaders and diversity leaders for the next

Algorithm 2 Elite archive evolution.

WANG ET AL. 11 of 26
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search direction with Algorithm 1 (line 4). After that, the whole population is divided into several clusters with different evolution directions, and the

chemotaxis of each bacterium is conducted according to a specific convergence point and a specific diversity one by Equations (10) and (11).

The main characteristic of chemotaxis is to run towards the higher nutrient concentration. Therefore, once the global best of the population

is updated, the swimming behaviour is activated to make bacteria walk in the same direction until the performance cannot be further improved or

the maximum swimming iteration times Ns is satisfied (lines 5–15). After the chemotaxis process, the main updating operation is completed and a

new population is produced. Before the elimination, the convergence degree of the current iteration is calculated by Equation (6), and the current

minimum distance to the ideal point is recorded as minC (lines 16–17). Subsequently, the adaptive procedure is executed (lines 18–26). The indi-

viduals with the same decision variables are checked and distributed to other decision space points, which is to obtain a group with better diver-

sity (line 27). Finally, the elite archive is updated and the above processes are repeated until the maximum iterations is satisfied (line 28).

4 | EXPERIMENTAL SETUP

4.1 | Benchmarks and experimental designs

In this paper, a series of well-known and challenging test functions are selected to validate the performance of the proposed MBCO/DML. The

overview of benchmark problems is provided in Table 1. FON, KUR, POL, and SCH1 2 (Niu, Liu, & Tan, 2019; Yi et al., 2016) are classic low-

Algorithm 3 Overview of MBCO/DML.
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dimension problems, whose features of Pareto front cover almost all distribution types, including concavity, convexity, and disconnectivity. Even

so, to verify the validity in high-dimension decision variables problems, the ZDT series functions are applied. To further examine the effectiveness,

two other more challenging groups of test functions with tri-objective, that is, F1–10, DTLZ 4–7, are applied. With the previous comparison prob-

lems, more local Pareto optimal solutions exist in the F series and DTLZ series to make it more difficult for the multiobjective algorithms. For more

relevant details of these benchmark problems, please check (Deb, Thiele, et al., 2002; Zhang et al., 2008), respectively.

We design three group of experiments to demonstrate the performance of the proposed algorithm, that is, ablation experiments of sub-

strategies, comparisons with novel multiobjective bacterial-based optimization algorithms (MOBAs), comparisons with other multiobjective evolu-

tionary algorithms (MOEAs).

• Ablation experiments of sub-strategies: This experimental design disassembles each proposed sub-strategy and validates their functions by stac-

king them one by one.

• Comparisons with MOBAs: MOBFO (Yi et al., 2016), MORBCO (Niu et al., 2020), and MCMBFO (Niu, Liu, & Tan, 2019). These three MOBAs

represent the new trend applying bacterial-based structures to solve MOPs in recent years.

• Comparisons with other population-based multiobjective optimization algorithms: NMPSO (Lin et al., 2018), BiGE (Li et al., 2015), RVEA (Cheng

et al., 2016), and MOCell (Nebro et al., 2009). Those algorithms represent the most dominant idea of population heuristic evolution for intelli-

gence optimization.

4.2 | Settings of parameters

For a fair comparison of the performance differences between the comparison algorithms, the parameters of each algorithm were set according

to the reference optimum parameters as reported in Table 2. All experiments are carried out on a PC with AMD 4800H 3200 MHz CPU and

16 GB memory. We carry out our numerical experiments on the platform PlatEMO (Tian et al., 2017), which can be accessed via https://github.

com/BIMK/PlatEMO.

As the first attempt to integrate clustering concept into the practice of leader selection in population-based multiobjective optimization, the

number of clusters cluNum is set to 6 by repeated experiments and getting the best value. As indicated by some population-based algorithms (Lin

et al., 2018; Martínez & Coello, 2011; Yi et al., 2016), their initial weight ω is sampled in a range, while keeping the weight and learning rate in its

original position. The initial weight ω of MBCO/DML is generated in [0.8, 1.3] and the learning rate for convergence leader rcon and diversity

leader rdiv is produced in [1.5, 2.5]. In addition, the chemotaxis step size C is sampled between the lower chemotaxis step size and the upper is set

in [0.1, 1.2]. The number of swimming times Ns is set to 2 for MBCO/DML to execute greedy search. For the capability of elite archive is set to

100 as (Yi et al., 2016). For elite archive evolution, pc and pm are the crossover probability and the mutation probability respectively that are set

TABLE 1 The overview of benchmark problems.

Benchmarks Variables (D) Objectives (M) Features of true PF Sample size in PF

FON 3 2 Concave 500

KUR 3 2 Disconnected 874

POL 2 2 Convex; disconnected 1102

SCH1 1 2 Convex 500

SCH2 1 2 Disconnected 1335

ZDT1 30 2 Convex 10,000

ZDT2 30 2 Concave 10,000

ZDT3 30 2 Disconnected 10,000

ZDT4 10 2 Convex; multimodal 10,000

ZDT6 10 2 Concave; multimodal; biased 10,000

F1,5 30 2 Convex 10,000

F2,3,6,7,9,10 30 2 Concave 10,000

F4,8 30 3 Concave 9870

DTLZ4 12 3 Concave 9870

DTLZ5,6 12 3 Concave; degenerated; biased 10,000

DTLZ7 22 3 Disconnected; multimodal 10,000

WANG ET AL. 13 of 26
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to 0.9 and 1/20. The larger crossover and mutation probability that is different from previous literature ensures that the crossover and mutation

operators can produce more different offspring from the parental generation. Both ηc and ηm being defined as 5 are the distribution factors for

SBX and PM respectively.

Among all comparison algorithms, the population size is set to 100 for bi-objective problems and 105 for tri-objective problems. The maximal

number of fitness evaluations (FEs) is set at 100,000 for bi-objective problems and at 150,000 for tri-objective problems. All the experimental

results are obtained after 30 independent runs. Furthermore, the Wilcoxon rank-sum test (Tian et al., 2018) is employed at the significance level

of 0.05. The symbols ‘+’, ‘�’, ‘≈’ provided in the bottom of tables represent that the result is significantly superior to, significantly inferior to and

statistically similar to that obtained by MBCO/DML, respectively.

4.3 | Evaluation metrics

For the evaluation metrics, we use three commonly used metrics, that is, inverted generational distance (IGD), hyper-volume (HV) and diversity

index Spread, to evaluate the quality of the results. Brief descriptions of these metrics are given as follows:

IGD (Bosman & Thierens, 2003) focuses on measuring the average distance between the feasible solutions obtained by the MO algorithms.

The better the comprehensive performance and Pareto solutions distribution multiobjective algorithms get, the smaller the IGD value will obtain.

It can be calculated using Equation (14).

IGD PS,PFð Þ¼
P

x � PFminy � PSdist x,yð Þ
j PF j , ð14Þ

where, PS is obtained for the Pareto solution set and PF represents a uniformly distributed set of reference points sampled from Pareto front,

while dist(x, y) is used to calculate the Euclidean distance of x and y.

HV (Beume et al., 2009) is used to measure the volume of the hypercube surrounded by the obtained results and the given reference point.

The greater the value of HV, the better is the performance of the multiobjective algorithm. It can be calculated by Equation (15).

HV PS, referpð Þ¼ δ [ jPSj
i¼1vi

� �
, ð15Þ

where, referp represents a reference point used to calculate the volume of the region in the target space enclosed by the reference point and the

set of nondominated solutions obtained by the algorithm. δ denotes the Lebesgue measure, which is used to measure the volume; vi is the hyper-

volume of the reference point and the ith solution in the non-dominated solution set. The reference point used for calculating HV is set

to 1:1,1:1,…,1:1ð Þn.
Spread (Li & Zheng, 2009) is to evaluate the ability of the MO algorithms to achieve better diversity performance, which can be calculated by

Equation (16).

SP PS,PFð Þ¼

Pm
i¼1

mdist Ei,PSð Þþ P
x � p

jmdist x,PSð Þ�dist j
Pm
i¼1

mdist Ei,PSð Þþ PSj�mð Þ�dist
, ð16Þ

TABLE 2 Parameters setting of all algorithms compared.

Algorithms Settings of parameters

MOBFO (Yi et al., 2016) Ned ¼1=N,Nre ¼1=N,Nc ¼1=N,ped ¼1=N,Ci � 0:1,0:2½ � if stagnation
MORBCO (Niu et al., 2020) freRc¼10, freRe¼20,Ns ¼4,Pel ¼0:25,C1,C2 ¼3,C¼0:001,pRep¼1=20,npbest¼2

MCMBFO (Niu, Liu, & Tan, 2019) Nc ¼300,Nre ¼Ned ¼2,Ns ¼4,Cmax ¼1,Cmin ¼0:1,C1 ¼C2 ¼ 7:5,C3 ¼10, Informax ¼0:002

NMPSO (Lin et al., 2018) ω� 0:1,0:5½ �,c1,c2,c3 � 1:5,2:5½ �,pc ¼1=N,ηm ¼20

BiGE (Li et al., 2015) pc ¼1,ηc ¼ ηm ¼20,pm ¼1=N

RVEA (Cheng et al., 2016) α¼2, fr¼0:1

MOCell (Nebro et al., 2009) pc ¼1,pm ¼1=N,Feedback¼20

MBCO/DML cluNum¼6,ω� 0:8,1:3½ �,C� 0:1,1:2½ �,rcon, rdiv � 1:5,2:5½ �,Ns ¼2,pc ¼ 0:9,pm ¼1=20,ηc ¼ ηm ¼5
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where, Ei 1,2,…,mð Þ are the extreme solutions in PF, m is the number of objective function. mdist x,PSð Þ¼ min
y � PS,y ≠ x

f xð Þ� f yð Þk k denotes the mini-

mum gap from the solution x to current solutions set. dist¼ P
x � PS

mdist x,PSð Þ= jPS j represents the average minimum distance of solution x with

other solutions. Smaller value of Spread indicates the better diversity of obtained Pareto front.

5 | EXPERIMENTAL RESULTS AND ANALYSIS

5.1 | Ablation experiments of sub-strategies

In above sections, the main components and strategies of MBCO/DML have been introduced, which includes dynamic multi-leader selection for

subpopulations and co-evolution search on elite archive mechanisms. To validate the contribution of each strategy, we compare each key compo-

nent in this section over tri-objective DTLZ5 benchmark. The visualized results demonstrate the effectiveness of key component of MBCO/DML.

First of all, we extend the standard BCO to solve MOPs with external archive and select an elite as global best randomly. Then, the elite evo-

lution mechanism is added in standard MBCO to verify the improvement that co-evolution brings. On the other hand, the proposed dynamic

multi-leader selection mechanism is integrated into the conventional BCO framework but no the assisted elite co-evolution. This uncompleted

version is to verify the performance of the proposed dynamic multi-leader evolution mechanism in solving MOPs. Finally, the unabridged MBCO/

DML version is conducted to see whether the genetic evolution and the population evolution can reinforce each other by the co-evolution

method.

Converging to the true Pareto front is the primary task of multiobjective optimization. In addition, making the solution set with a better diver-

sity based on convergence is another challenge of multiobjective optimization. It can be seen from Figure 7 that the performance of original BCO

framework without any modifications is the worst in all ablation experiments. Most bacterial individuals cannot approach the true Pareto front

F IGURE 7 The obtained Pareto front on DTLZ5 benchmark.
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and a part of the members gather in the local Pareto optimal. The obtained Pareto front by MBCO shows lower convergence and diversity. With

the help of elite evolution mechanism, we can see that the most population can approach to true Pareto font but still unable to cover the whole

true front. Moreover, due to the single global leader setting, the entire colony cannot cover the true Pareto front totally and lack the key searching

capability, especially in some challenging objective space. From the result of MBCO/DML without elite evolution, we can see that almost the

whole population can cover the true Pareto front. But due to the bootstrap of elite archive, dynamic multi-leader mechanism still lacks of suffi-

cient convergent capability and diversity maintenance in limited evaluation times.

With assistance of elite co-evolution mechanism, it can be seen that our proposed MBCO/DML can fully cover the true Pareto front and

achieve a relative uniform distribution. Figure 8 represents the IGD descent tendency for the standard MBCO and proposed MBCO with different

strategies. It can be observed that the IGD value of MBCO/DML declines with the fastest speed and achieve the best performance. Compared to

MBCO, our proposed algorithms greatly enhance the capability of BCO to tackle MOPs. In comparison to MBCO with elite evolution, self-tuning

elimination probability of MBCO/DML can adaptively adjust the place of bacteria and avoid trapping into local optima. Finally, the elite evolution

provides the better leadership for search population and thus speed up the optimization process. Therefore, we can draw a conclusion that all of

strategies play an essential role in optimization process, that is, dynamic multi-leader selection greatly improves the convergence and diversity for

bacterial colony and the elite co-evolution accelerate the whole process.

5.2 | Comparisons with other MOBAs

The mean and standard deviation of the IGD, HV, Spread values of three novel MOBAs and the proposed MBCO/DML on 24 selected bench-

marks are presented in Tables 3–5, respectively. From the overall situation of the three indicators, the proposed MBCO/DML performs signifi-

cantly better than the three novel MOBAs, such as MOBFO (Yi et al., 2016), MORBCO (Niu et al., 2020), and MCMBFO (Niu, Liu, & Tan, 2019).

The best mean of metric for each test instance is highlighted in bold.

As observed in Table 3, the proposed MBCO/DML shows an obvious advantage over the other three competitors on main test instances. To

be specific, MBCO/DML gains the best IGD value on 19 out of 24 test instances, while the gains are 0 best IGD values for MOBFO, 5 best IGD

values for MORBCO and 0 best IGD value for MCMBFO. More specifically, MORBCO just performs best on F3, F7, F9, F10, F4 and MBCO/DML

obtains the best metric over other cases. The proposed MBCO/DML shows significantly superior performance as it achieves better than other

MOBAs on the ZDT series, DTLZ series and other chosen benchmarks. Of all 24 benchmarks, the IGB values obtained by MBCO/DML statistically

better than MOBFO over all cases, MORBCO over 17 cases, and MCMBFO over 23 cases, respectively.

The HV results of all the 24 test problems are provided in Table 4, from which similar conclusions can be drawn from the IGD results in the

HV values. MBCO/DML gains better performance over most benchmarks and achieves 17 best HV results out of 24 test instances. Conversely,

the results of paired statistical test of the proposed MBCO/DML with MOBFO, MORBCO and MCMBFO are 1/23/0, 4/20/0, and 2/20/2,

respectively. It is noted that the mean and standard deviation take the value of zeros because the obtained Pareto front cannot converge to the

reference point for calculating HV metric. Even though MBCO/DML performance well on most MOPs, it still shows a poor ability on the MOPs

F IGURE 8 The optimization process of IGD on DTLZ5 benchmark.
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with many local Pareto fronts such as F3, F7, and F10. The convergence pressure can be seen from Figure 9, from which it can be observed that

the proposed MBCO/DML still cannot cover all the true Pareto front in the limited evaluation times.

Based on the statistical results of Spread from Table 5, the proposed MBCO/DML can achieve a more uniform Pareto front and gain better

diversity measurement than the three new MOBAs. With the help of the clustering-based dynamic multi-leader selection mechanism, MBCO/

DML obtains the best Spread values on 20 out of 24 test instances while other MOBAs such as MOBFO with 1 best Spread result on F7 and

MCMBFO with 3 best Spread values on ZDT6, DTLZ4, and DTLZ7, respectively. MCMBFO introduces a multi-swarm cooperative mechanism for

exploring more unknown areas which can help MCMBFO cover a wider range of true Pareto front and enhance the diversity of the final obtained

Pareto front. In summary, we can observe that the MBCO/DML shows a great improvement in convergence and diversity. Three novel MOBAs

all apply different strategies expanding the original BFO process to solve MOPs. However, since the three-level nested loop search structure is

retained, more computing resources and computation time is still required for them while the MBCO/DML can save computation resource by

using a parallel structure.

5.3 | Comparisons with other population-based multiobjective optimization algorithms

The mean and standard deviation of the IGD, HV, Spread values of the selected MOEAs and the proposed MBCO/DML on 24 selected bench-

marks are presented in Tables 6–8, respectively. As seen from the three tables, the proposed MBCO/DML performs significantly better other

commonly effective MOEAs, such as NMPSO (Lin et al., 2018), BiGE (Li et al., 2015), RVEA (Cheng et al., 2016), and MOCell (Nebro et al., 2009).

The best mean of metric for each test is highlighted in bold.

TABLE 3 IGD values of MBCO/DML and three novel MOBAs on 24 selected benchmarks.

Problem MOBFO MORBCO MCMBFO MBCO/DML

FON 2.3826e�1 (7.66e�2) � 8.4436e�3 (9.59e�4) � 7.4968e�3 (1.25e�3) � 4.0413e�3 (1.38e�4)

KUR 3.2773e+0 (6.83e�1) � 1.2292e�1 (2.32e�2) � 5.9768e�2 (1.54e�2) � 3.4919e�2 (6.24e�4)

POL 8.5451e�1 (6.49e�1) � 1.9615e�1 (6.32e�2) � 6.1311e�1 (7.43e�1) � 5.8597e�2 (1.84e�3)

SCH1 2.5813e�1 (8.27e�2) � 3.9121e�2 (4.71e�3) � 1.7565e�2 (1.80e�3) ≈ 1.6968e�2 (4.53e�4)

SCH2 2.7936e�1 (9.82e�2) � 5.1494e�2 (7.67e�3) � 4.1929e�2 (5.76e�2) � 2.0160e�2 (2.11e�4)

ZDT1 3.8474e�2 (2.71e�2) � 1.2745e�2 (4.28e�3) � 1.4607e�2 (3.02e�3) � 3.8805e�3 (3.76e�5)

ZDT2 1.2414e�1 (9.53e�2) � 1.2822e�1 (2.39e�1) � 4.8163e�2 (1.31e�1) � 3.9865e�3 (3.85e�5)

ZDT3 6.2901e�2 (3.53e�2) � 3.4189e�2 (1.65e�2) � 1.1566e�2 (2.16e�3) � 4.5420e�3 (5.11e�5)

ZDT4 7.7114e+1 (1.13e+1) � 4.8013e�2 (9.62e�2) � 2.7739e+1 (1.41e+1) � 3.8773e�3 (9.94e�5)

ZDT6 1.4072e�2 (8.97e�3) � 1.1294e�2 (5.36e�3) � 7.0528e�2 (2.25e�1) � 3.5153e�3 (2.96e�4)

F1 3.5022e�1 (3.01e�2) � 8.4938e�3 (9.87e�4) � 3.9440e�1 (7.79e�2) � 4.3606e�3 (1.06e�4)

F2 6.0949e�1 (1.13e�16) � 9.1837e�3 (1.05e�3) � 6.0852e�1 (1.59e�3) � 4.7216e�3 (1.47e�4)

F3 4.3130e�1 (4.41e�2) � 1.0962e�2 (2.44e�3) + 2.1523e+0 (1.33e�1) � 3.1900e�1 (2.56e�2)

F5 5.4728e�1 (4.03e�2) � 1.5618e�2 (3.90e�3) � 5.5194e�1 (1.17e�2) � 7.4515e�3 (4.76e�4)

F6 4.2197e�1 (9.61e�3) � 1.3285e�2 (1.77e�3) � 4.0803e�1 (6.26e�3) � 8.7294e�3 (7.45e�4)

F7 4.1578e�1 (3.71e�2) � 2.7338e�1 (8.17e�2) + 1.6091e+0 (1.91e�1) � 3.6300e�1 (3.23e�3)

F9 2.0982e�1 (1.74e�2) � 1.1911e�2 (1.13e�3) ≈ 1.7049e�1 (1.07e�2) � 1.7410e�2 (1.00e�2)

F10 8.2316e�1 (7.27e�3) � 1.5505e�1 (2.03e�1) + 8.6108e�1 (2.04e�1) � 7.3785e�1 (9.94e�3)

F4 5.4143e�1 (9.42e�4) � 7.3228e�2 (6.13e�3) + 1.1361e+0 (2.23e�1) � 7.8808e�2 (3.67e�3)

F8 5.4065e�1 (1.19e�3) � 3.0413e�1 (9.16e�2) ≈ 4.9981e�1 (5.86e�2) � 2.4890e�1 (1.22e�1)

DTLZ4 9.5398e�1 (1.12e�1) � 5.6856e�1 (1.01e�1) � 1.6662e�1 (1.40e�2) � 7.7999e�2 (5.45e�3)

DTLZ5 4.1180e�1 (5.17e�2) � 1.2453e�1 (6.29e�2) � 3.0495e�1 (5.16e�3) � 4.6877e�3 (1.51e�4)

DTLZ6 1.2341e�2 (1.24e�2) � 5.8239e�1 (5.90e�1) � 3.1912e�1 (1.01e�1) � 4.5389e�3 (6.14e�5)

DTLZ7 5.3066e�1 (1.12e�1) � 1.0077e�1 (1.40e�2) ≈ 1.1640e�1 (1.42e�2) � 9.7347e�2 (7.99e�3)

+/�/≈ 0/24/0 4/17/3 0/23/1 /

Best/All 0/24 5/24 0/24 19/24
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Table 6 shows the statistical results of IGD values of the proposed MBCO/DML and four MOEAs for 24 test instances. It can be observed

that the proposed MBCO/DML obtains the 18 best IGD values out of 24 benchmarks, which is much greater than the other four competitive

MOEAs. While there are 0 best IGD results for BiGE, MOCell and only 2 best IGD values for RVEA on F8, DTLZ4, 4 best for NMPSO on F3, F4,

F7, and DTLZ7. In contrast, the proposed MBCO/DML can achieve superior performance over most test instances that reach an accuracy level

under 10e�3. As for paired statistic test results, the MBCO/DML significantly outperforms NMPSO over 19 cases, BiGE over 23 cases, RVEA

over 22 cases, MOCell over 23 cases, respectively. The proposed MBCO/DML exhibits a significant advantage over the other MOEAs on bi-

objective problems except NMPSO on F3, F7. In terms of tri-objective optimization problems, that is, F4, F8, DTLZ4–DTLZ7, the proposed

MBCO/DML showed a significant advantage, especially in degenerated and biased DTLZ5 and DTLZ6. In generally, the comprehensive IGD met-

ric results show MBCO/DML have a significant competitive edge on bi- and tri-objective optimization problems.

As seen in Table 7, the 20 best HV values are obtained by the proposed MBCO/DML, while 1 best HV value for NMPSO and MOCell respec-

tively, 2 best HV values for RVEA are obtained. For paired test on HV metric results, the values of MBCO/DML are significantly better than

NMPSO over 22 cases, BiGE over 23 cases, RVEA over 22 cases, and MOCell over 23 cases, respectively. It is seen that the proposed MBCO/

DML outperforms almost all algorithms on bi-objective benchmarks except the MOCell on ZDT3. For tri-objective benchmarks of the F series and

DTLZ series, only the RVEA performs better on F8 and DTLZ4 and NMPSO on DTLZ7 than MBCO/DML.

Table 8 shows the diversity measurement Spread of obtained Pareto front, which is shown to demonstrate that our proposed clustering-

based dynamic multi-leaders selection mechanism can efficiently realize better diversity, that is, the evenness of the final Pareto front. From the

statistical results of Spread values, 17 best performances are obtained by the proposed MBCO/DML, while 0 best Spread value is obtained for

BiGE, NMPSO, and MOCell, respectively. It is noticed that RVEA applying decomposition concept could reach 7 best performances on overall

24 test instances. RVEA still shows relatively strong competitiveness in enhancing diversity for its adaptive adjustment reference vector-guided

mechanism. The diversity leader selection mechanism used by MBCO/DML achieves better performances in enhancing the diversity of obtained

TABLE 4 HV values of MBCO/DML and three novel MOBAs on 24 selected benchmarks.

Problem MOBFO MORBCO MCMBFO MBCO/DML

FON 3.2092e�1 (7.00e�2) � 6.3504e�1 (1.36e�3) � 6.3077e�1 (3.08e�3) � 6.4073e�1 (1.11e�4)

KUR 3.3698e�1 (2.37e�1) � 7.0380e�1 (2.73e�3) � 7.4248e�1 (1.28e�2) + 7.1474e�1 (1.60e�4)

POL 1.0743e+0 (6.90e�3) � 1.0786e+0 (3.74e�3) � 1.0779e+0 (3.74e�3) � 1.0830e+0 (2.23e�5)

SCH1 1.0157e+0 (2.32e�2) � 1.0653e+0 (9.60e�4) � 1.0692e+0 (2.43e�4) ≈ 1.0693e+0 (4.16e�5)

SCH2 8.5935e�1 (2.04e�2) � 8.7901e�1 (2.23e�3) � 8.8151e�1 (4.15e�3) + 8.8105e�1 (2.46e�5)

ZDT1 8.8902e�1 (2.60e�2) � 9.1830e�1 (4.19e�3) � 9.1220e�1 (4.46e�3) � 9.3052e�1 (4.14e�5)

ZDT2 4.7601e�1 (9.71e�2) � 5.5639e�1 (1.72e�1) � 6.0669e�1 (9.47e�2) � 6.5511e�1 (4.20e�5)

ZDT3 8.9310e�1 (6.08e�2) + 8.0814e�1 (3.10e�2) � 8.0546e�1 (1.79e�3) � 8.0985e�1 (1.91e�5)

ZDT4 0.0000e+0 (0.00e+0) � 8.6431e�1 (1.37e�1) � 0.0000e+0 (0.00e+0) � 9.3035e�1 (2.72e�4)

ZDT6 5.6292e�1 (7.88e�3) � 5.5343e�1 (1.34e�2) � 5.4140e�1 (9.18e�2) ≈ 5.7290e�1 (3.17e�4)

F1 5.3800e�1 (2.38e�2) � 9.2553e�1 (8.52e�4) � 5.3494e�1 (3.21e�2) � 9.2905e�1 (1.95e�4)

F2 2.1000e�1 (1.41e�16) � 6.4985e�1 (9.52e�4) � 2.0991e�1 (5.98e�5) � 6.5306e�1 (2.82e�4)

F3 2.1000e�1 (5.53e�10) � 5.6509e�1 (3.43e�3) + 0.0000e+0 (0.00e+0) � 2.3854e�1 (1.64e�2)

F5 4.6741e�1 (1.08e�2) � 9.1479e�1 (5.38e�3) � 4.7609e�1 (2.87e�3) � 9.2418e�1 (6.33e�4)

F6 2.3640e�1 (1.06e�3) � 6.4218e�1 (3.24e�3) � 2.4233e�1 (1.18e�3) � 6.4599e�1 (1.14e�3)

F7 2.1000e�1 (7.04e�10) � 2.7776e�1 (5.83e�2) + 0.0000e+0 (0.00e+0) � 2.1019e�1 (7.32e�4)

F9 6.8794e�1 (8.85e�3) � 9.1830e�1 (1.78e�3) + 7.2100e�1 (1.02e�2) � 9.0843e�1 (1.45e�2)

F10 2.2991e�1 (8.58e�3) � 7.9401e�1 (1.55e�1) + 2.2794e�1 (5.52e�2) � 3.2658e�1 (1.04e�2)

F4 6.0242e�1 (8.52e�3) � 8.7282e�1 (5.76e�3) + 0.0000e+0 (0.00e+0) � 8.4616e�1 (6.07e�3)

F8 6.0852e�1 (5.16e�3) � 7.4309e�1 (3.34e�2) � 5.9859e�1 (6.64e�2) � 7.6740e�1 (3.53e�2)

DTLZ4 6.3052e�3 (2.74e�2) � 3.1103e�1 (9.78e�2) � 6.8930e�1 (2.74e�2) � 8.5600e�1 (5.87e�3)

DTLZ5 1.1295e�2 (1.36e�2) � 2.3256e�1 (8.47e�2) � 8.2924e�2 (3.54e�3) � 4.0051e�1 (8.11e�5)

DTLZ6 3.7440e�1 (3.20e�2) � 1.9137e�1 (1.58e�1) � 9.5088e�2 (2.03e�2) � 4.0075e�1 (3.41e�5)

DTLZ7 3.9194e�1 (2.21e�2) � 4.6882e�1 (7.07e�3) � 4.4348e�1 (8.46e�3) � 4.7680e�1 (4.61e�3)

+/�/≈ 1/23/0 4/20/0 2/20/2 /

Best/All 1/24 4/24 2/24 17/24
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Pareto front. This means that designing different strategies for different spaces can effectively take into account multiple search spaces and

obtain good diversity performance. In the paired statistical test, MBCO/DML performances significantly better than NMPSO over 21 cases, BiGE

over 23 cases, RVEA over 15 cases, and NMPSO over 21 cases. To further demonstrate the performance of the proposed MBCO/DML, the

Pareto front obtained by MBCO/DML is shown in Figure 9, from which we can observe that almost all non-dominated solutions set can achieve

good distribution. Overall, the results show that the proposed MBCO/DML is effective and efficient for convergence and diversity with the

most MOPs.

5.4 | Effectiveness analysis of MBCO/DML

1. The robustness of dynamic multi-leader strategy

Motivated by the idea of the searching population should have the ability to explore different solution spaces with different evolutionary

directions, we dynamically split the entire population into several subgroups with hierarchical clustering. The dynamic multi-leader strategy over-

comes the lower robustness of conventional population-based algorithms, that is, easier trapping into local Pareto optimal and lower diversity,

caused by solely global guidance mechanisms. In MBCO/DML, dynamic subpopulations have own evolution directions and leaderships. This paral-

lel idea greatly improves the searching efficiency and makes the most individuals follow the best leaderships. From the statistical results with

NMPSO, MOBFO, MORBCO, MCMBFO whose searching population is just guided by a single global leader like the best diversity leader, the

MBCO/DML is much more capable of searching unknown regions and achieving the performance of better balance of convergence and diversity.

TABLE 5 Spread values of MBCO/DML and three novel MOBAs on 24 selected benchmarks.

Problem MOBFO MORBCO MCMBFO MBCO/DML

FON 9.3634e�1 (2.45e�1) � 1.0538e+0 (9.37e�2) � 2.2344e�1 (1.93e�2) � 1.5492e�1 (1.26e�2)

KUR 1.0136e+0 (2.27e�1) � 1.3594e+0 (6.84e�2) � 4.7291e�1 (7.09e�2) � 2.0532e�1 (2.11e�2)

POL 1.0956e+0 (2.80e�1) � 1.3110e+0 (8.45e�2) � 7.2727e�1 (2.77e�1) � 1.8655e�1 (2.01e�2)

SCH1 9.3160e�1 (2.00e�1) � 1.0692e+0 (8.57e�2) � 2.0708e�1 (2.64e�2) � 1.7537e�1 (1.53e�2)

SCH2 1.0131e+0 (1.89e�1) � 1.1740e+0 (8.98e�2) � 3.8276e�1 (1.80e�1) + 4.5059e�1 (2.39e�2)

ZDT1 6.6209e�1 (2.64e�1) � 1.3301e+0 (1.81e�1) � 2.2303e�1 (3.09e�2) � 1.7281e�1 (1.62e�2)

ZDT2 1.0711e+0 (1.51e�1) � 1.4118e+0 (3.38e�1) + 3.2844e�1 (1.67e�1) � 1.6079e�1 (1.80e�2)

ZDT3 1.2189e+0 (1.29e�1) � 1.5807e+0 (2.09e�1) � 2.8625e�1 (3.53e�2) � 2.1009e�1 (2.24e�2)

ZDT4 1.0097e+0 (4.89e�2) � 1.3033e+0 (1.25e�1) � 1.0019e+0 (2.40e�2) � 1.3962e�1 (1.49e�2)

ZDT6 1.3870e+0 (4.67e�1) � 1.7759e+0 (1.49e�1) � 7.5600e�1 (4.37e�1) ≈ 7.9691e�1 (4.69e�1)

F1 1.1517e+0 (6.58e�2) � 9.7414e�1 (7.71e�2) � 1.0132e+0 (1.24e�1) � 1.6673e�1 (1.25e�2)

F2 1.0000e+0 (0.00e+0) � 9.8729e�1 (9.08e�2) � 1.0000e+0 (8.52e�4) � 1.6901e�1 (1.09e�2)

F3 1.1358e+0 (1.76e�1) � 1.1242e+0 (1.22e�1) � 9.3745e�1 (2.85e�2) � 8.7042e�1 (1.06e�1)

F5 1.0023e+0 (4.47e�2) � 1.2784e+0 (1.13e�1) � 8.6152e�1 (9.78e�3) � 1.6015e�1 (1.32e�2)

F6 1.0282e+0 (1.42e�2) � 1.2495e+0 (7.23e�2) � 9.1809e�1 (9.16e�3) � 1.7321e�1 (1.51e�2)

F7 9.0514e�1 (1.14e�1) + 1.3728e+0 (1.13e�1) � 8.9084e�1 (2.61e�2) + 9.5294e�1 (1.06e�1)

F9 9.0370e�1 (7.32e�2) � 1.2789e+0 (9.08e�2) � 7.7150e�1 (1.02e�1) � 1.8046e�1 (2.47e�2)

F10 1.0114e+0 (6.53e�3) � 1.3178e+0 (2.02e�1) � 9.9595e�1 (1.63e�3) � 9.5858e�1 (5.52e�3)

F4 1.6272e+0 (1.10e�1) � 8.0502e�1 (1.73e�1) � 6.9994e�1 (1.77e�1) � 5.8167e�1 (2.24e�1)

F8 1.6337e+0 (1.68e�1) � 1.5254e+0 (2.37e�1) � 1.1845e+0 (2.46e�1) � 4.9563e�1 (2.51e�1)

DTLZ4 1.3069e+0 (1.63e�1) � 1.2362e+0 (9.55e�2) � 4.8899e�1 (8.32e�2) + 5.5522e�1 (5.99e�2)

DTLZ5 6.4469e�1 (5.63e�2) � 1.3083e+0 (1.36e�1) � 6.3678e�1 (5.07e�2) � 2.4243e�1 (2.11e�2)

DTLZ6 1.0409e+0 (5.51e�1) � 1.4784e+0 (4.56e�1) � 8.4543e�1 (2.11e�1) � 2.3355e�1 (1.63e�2)

DTLZ7 1.1642e+0 (1.04e�1) � 1.2902e+0 (1.17e�1) � 4.5037e�1 (2.90e�2) + 5.1079e�1 (4.28e�2)

+/�/≈ 1/23/0 1/23/0 4/19/1 /

Best/All 0/24 0/24 4/24 20/24
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F IGURE 9 The Pareto front obtained by the proposed MBCO/DML.
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2. The balance of convergence and diversity

In MBCO/DML, the convergence and diversity leaders are defined to guide the whole population towards a balance evolutionary direc-

tion. The Pareto front obtained by the proposed MBCO/DML is represented as Figure 9, from which we can see that MBCO/DML on almost

all benchmarks can converge to the true Pareto front and obtain a set of solutions with uniform distribution. From the results of a comparison

experiment with NMPSO, MOBFO, MORBCO, MCMBFO that solely depend on a single global optimum to guide the whole population, the

proposed MBCO/DML will be able to make full use of the two types of prior knowledge of convergence and diversity simultaneously. On

the one hand, two groups of comparison experiments with MOBAs and MOEAs demonstrate our convergence leadership and adaptive elite

evolution that can further help the entire population approach to true Pareto front. On the other hand, as we can observe from the tables of

Spread, the MBCO/DML completely overwhelms other comparison algorithms in terms of diversity, taking 20/24, 17/24 lead with MOBAs

and MOEAs in Spread metric respectively. We can see that the MBCO/DML can obtain a relatively even Pareto front with the guidance of

diversity leadership.

3. The performance of elite co-evolution technique

Elite co-evolution technique is used to provide more diverse learning options for jumping out local optimal and speeding up convergence. As

shown by the statistical results, NMPSO and MOBAs using the external archive without evolutionary capability are difficult to escape the trap of

local Pareto optimal and always get the worst performance. This even cannot converge to reference point for calculating HV metric (e.g., MOBFO

on F4, MCMBFO on ZDT4, F3, F7, F4, and RVEA on F3, F7). It is a new operator that incorporates genetic evolution into the population genera-

tion. We can observe that MBCO/DML outperforms chosen MOEAs on almost all test instances, which demonstrates that the genetic evolution

TABLE 6 IGD values of MBCO/DML and four competitive MOEAs on 24 selected benchmarks.

Problem NMPSO BiGE RVEA MOCell MBCO/DML

FON 4.6594e�3 (2.99e�4) � 1.5195e�2 (1.39e�2) � 4.5398e�3 (6.59e�4) � 5.2676e�3 (1.87e�4) � 4.0413e�3 (1.38e�4)

KUR 8.1091e�1 (2.07e�1) � 1.3363e�1 (1.09e�1) � 7.6660e�2 (2.10e�2) � 4.1884e�2 (2.35e�3) � 3.4919e�2 (6.24e�4)

POL 9.4282e+0 (2.95e+0) � 3.4988e+0 (4.69e+0) � 2.7037e�1 (1.39e�2) � 6.8636e�2 (3.38e�3) � 5.8597e�2 (1.84e�3)

SCH1 2.5371e�1 (6.58e�2) � 4.0904e�2 (4.08e�3) � 4.2742e�2 (2.61e�4) � 1.9704e�2 (8.99e�4) � 1.6968e�2 (4.53e�4)

SCH2 1.2882e�1 (4.22e�2) � 5.8770e�2 (8.12e�3) � 4.4828e�2 (1.83e�4) � 2.3691e�2 (7.77e�4) � 2.0160e�2 (2.11e�4)

ZDT1 2.7494e�2 (9.59e�3) � 1.2250e�2 (3.31e�3) � 5.6097e�3 (6.30e�4) � 4.9267e�3 (1.60e�4) � 3.8805e�3 (3.76e�5)

ZDT2 1.8697e�2 (3.61e�3) � 1.2987e�2 (3.51e�3) � 5.6429e�3 (1.42e�3) � 4.9060e�3 (1.72e�4) � 3.9865e�3 (3.85e�5)

ZDT3 1.0114e�1 (6.55e�4) � 1.3092e�2 (1.79e�3) � 8.3414e�3 (5.30e�4) � 6.3463e�3 (5.31e�3) � 4.5420e�3 (5.11e�5)

ZDT4 3.1952e�2 (2.52e�2) � 1.5102e�2 (4.99e�3) � 5.5103e�2 (2.99e�2) � 8.3517e�3 (1.57e�3) � 3.8773e�3 (9.94e�5)

ZDT6 4.4264e�3 (3.64e�4) � 8.3531e�3 (9.39e�4) � 4.4365e�2 (7.10e�3) � 4.9140e�3 (3.35e�4) � 3.5153e�3 (2.96e�4)

F1 1.7389e�2 (5.61e�3) � 2.5972e�1 (3.95e�2) � 1.7320e�1 (3.95e�2) � 1.5763e�1 (4.73e�2) � 4.3606e�3 (1.06e�4)

F2 4.1269e�1 (2.83e�1) � 5.5642e�1 (5.40e�2) � 3.3287e�1 (1.11e�1) � 3.7738e�1 (1.33e�1) � 4.7216e�3 (1.47e�4)

F3 1.5732e�1 (1.40e�2) + 5.9861e�1 (8.22e�3) � 7.3586e�1 (4.51e�2) � 6.0238e�1 (1.21e�2) � 3.1900e�1 (2.56e�2)

F5 2.1436e�2 (6.69e�3) � 3.8858e�1 (1.39e�2) � 3.4123e�1 (4.19e�2) � 3.2938e�1 (2.95e�2) � 7.4515e�3 (4.76e�4)

F6 2.0061e�2 (4.19e�3) � 2.1877e�1 (9.35e�3) � 2.9777e�1 (1.59e�2) � 2.8056e�1 (2.48e�2) � 8.7294e�3 (7.45e�4)

F7 2.6523e�1 (1.27e�1) + 5.8247e�1 (6.47e�3) � 6.8918e�1 (3.54e�2) � 5.8262e�1 (6.22e�3) � 3.6300e�1 (3.23e�3)

F9 4.0520e�2 (2.13e�2) � 6.5690e�2 (3.28e�2) � 5.6837e�2 (1.23e�2) � 2.2644e�2 (8.32e�3) � 1.7410e�2 (1.00e�2)

F10 7.4608e�1 (1.81e�2) ≈ 8.0928e�1 (1.57e�3) � 4.8698e+0 (2.08e+1) � 8.0909e�1 (1.93e�3) � 7.3785e�1 (9.94e�3)

F4 7.6668e�2 (3.00e�3) ≈ 2.9719e�1 (7.42e�2) � 1.1956e�1 (1.82e�2) � 2.8339e�1 (3.45e�2) � 7.8808e�2 (3.67e�3)

F8 3.3907e�1 (7.09e�2) � 3.7835e�1 (1.65e�2) � 1.2152e�1 (1.67e�2) + 3.0729e�1 (2.39e�2) ≈ 2.4890e�1 (1.22e�1)

DTLZ4 9.0024e�2 (8.55e�2) � 1.0493e�1 (1.59e�1) ≈ 6.6673e�2 (8.97e�2) + 1.8563e�1 (3.03e�1) � 7.7999e�2 (5.45e�3)

DTLZ5 1.4996e�2 (3.16e�3) �� 1.5251e�2 (3.44e�3) � 5.8237e�2 (6.84e�4) � 5.8974e�3 (3.40e�4) � 4.6877e�3 (1.51e�4)

DTLZ6 1.4085e�2 (2.80e�3) � 7.0505e�1 (4.11e�2) � 6.4077e�2 (1.18e�2) � 5.1739e�3 (2.32e�4) � 4.5389e�3 (6.14e�5)

DTLZ7 6.6254e�2 (3.11e�3) + 2.8714e�1 (4.45e�1) � 1.0428e�1 (4.10e�3) � 1.1435e�1 (9.31e�2) � 9.7347e�2 (7.99e�3)

+/�/≈ 3/19/2 0/23/1 2/22/0 0/23/1 /

Best/All 4/24 0/24 2/24 0/24 18/24
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and the population evolution can reinforce each other by the co-evolution method. With the help of the proposed adaptive leader learning mech-

anism, MBCO/DML can converge to a final Pareto front that almost cover all true Pareto front with uniform distribution for bi-objective optimiza-

tion problems.

6 | CONCLUSION AND FUTURE WORK

In this article, we propose a new multiobjective bacterial colony optimization with dynamic multi-leader co-evolution, abbreviated as MBCO/

DML, for balancing the diversity and convergence in solving MOPs. The dynamic multi-leader concept is proposed to assist with the identification

of prior information in the population and compensate for the inefficiency of information transfer within the population. Based on the dynamic

multi-leader selection strategy, the whole population is separated into several bacterial clusters according to different evolution directions. Then,

the multi-leaders consisting of convergence and diversity leaders are adaptively selected in each dynamic bacterial cluster. We find that these

subgroups are able to continuously move towards the true Pareto front with the guidance of their convergence leader and diversity leader. In

addition, we create an adaptively evolutionary elite archive for improving the convergence speed. Based on the co-evolution concept of elite

archive evolution strategy, the problem of lacking sufficient searching capability due to overlapping between searching groups and elite individuals

is effectively solved, whereby we can explore more objective space in the limited computational time. Besides, the new learning method is modi-

fied to match multiobjective optimization tasks and the adaptive elimination probability adjustment strategy is proposed to avoid prematurity. All

these co-evolution and adaptive strategies are compatibly integrated into a comprehensive algorithm. Through the experiments on a series of

well-known benchmarks with three novel MOBAs and four competitive MOEAs, MBCO/DML shows the promising performance for

tackling MOPs.

TABLE 7 HV values of MBCO/DML and four competitive MOEAs on 24 selected benchmarks.

Problem NMPSO BiGE RVEA MOCell MBCO/DML

FON 6.4017e�1 (1.38e�4) � 6.2317e�1 (2.25e�2) � 6.3908e�1 (1.24e�3) � 6.3861e�1 (2.32e�4) � 6.4073e�1 (1.11e�4)

KUR 6.7701e�1 (9.17e�3) � 7.1285e�1 (1.34e�2) � 7.0724e�1 (3.31e�3) � 7.1389e�1 (2.04e�4) � 7.1474e�1 (1.60e�4)

POL 1.0307e+0 (3.04e�2) � 1.0734e+0 (6.07e�3) � 1.0810e+0 (1.36e�4) � 1.0827e+0 (6.86e�5) � 1.0830e+0 (2.23e�5)

SCH1 1.0329e+0 (1.28e�2) � 1.0651e+0 (9.36e�4) � 1.0681e+0 (1.12e�5) � 1.0687e+0 (1.50e�4) � 1.0693e+0 (4.16e�5)

SCH2 8.7505e�1 (4.35e�3) � 8.7878e�1 (1.77e�3) � 8.7804e�1 (8.86e�5) � 8.8073e�1 (8.65e�5) � 8.8105e�1 (2.46e�5)

ZDT1 6.9151e�1 (1.20e�2) � 9.1950e�1 (5.08e�3) � 9.2676e�1 (9.94e�4) � 9.2858e�1 (2.46e�4) � 9.3052e�1 (4.14e�5)

ZDT2 4.3567e�1 (2.12e�3) � 6.4563e�1 (3.52e�3) � 6.5191e�1 (1.77e�3) � 6.5357e�1 (2.07e�4) � 6.5511e�1 (4.20e�5)

ZDT3 5.6681e�1 (2.98e�4) � 8.0585e�1 (7.77e�4) � 8.0485e�1 (1.04e�3) � 8.1214e�1 (1.62e�2) + 8.0985e�1 (1.91e�5)

ZDT4 6.8663e�1 (2.35e�2) � 9.1162e�1 (7.02e�3) � 8.5637e�1 (3.62e�2) � 9.2147e�1 (2.64e�3) � 9.3035e�1 (2.72e�4)

ZDT6 3.8777e�1 (3.12e�4) � 5.6776e�1 (9.72e�4) � 5.1087e�1 (1.02e�2) � 5.6871e�1 (6.75e�4) � 5.7290e�1 (3.17e�4)

F1 7.0192e�1 (7.10e�3) � 7.2388e�1 (2.52e�2) � 7.7381e�1 (2.17e�2) � 7.9596e�1 (3.16e�2) � 9.2905e�1 (1.95e�4)

F2 2.0576e�1 (1.65e�1) � 2.1633e�1 (1.11e�2) � 3.0707e�1 (6.79e�2) � 2.8864e�1 (7.71e�2) � 6.5306e�1 (2.82e�4)

F3 2.2961e�1 (1.15e�2) � 1.7606e�2 (3.58e�2) � 0.0000e+0 (0.00e+0) � 1.1951e�2 (3.10e�2) � 2.3854e�1 (1.64e�2)

F5 6.9612e�1 (8.62e�3) � 6.3230e�1 (8.44e�3) � 6.6574e�1 (2.85e�2) � 6.7576e�1 (1.92e�2) � 9.2418e�1 (6.33e�4)

F6 4.3458e�1 (2.45e�3) � 3.7811e�1 (6.71e�3) � 3.1544e�1 (9.45e�3) � 3.2861e�1 (1.63e�2) � 6.4599e�1 (1.14e�3)

F7 1.6032e�1 (5.88e�2) � 8.7186e�2 (2.44e�2) � 0.0000e+0 (0.00e+0) � 8.1764e�2 (3.29e�2) � 2.1019e�1 (7.32e�4)

F9 6.7193e�1 (2.45e�2) � 8.5685e�1 (2.53e�2) � 8.5043e�1 (1.65e�2) � 8.9657e�1 (1.14e�2) � 9.0843e�1 (1.45e�2)

F10 1.8714e�1 (1.70e�2) � 2.4668e�1 (1.79e�3) � 2.2073e�1 (7.49e�2) � 2.4684e�1 (2.19e�3) � 3.2658e�1 (1.04e�2)

F4 5.6220e�1 (1.13e�3) � 7.2203e�1 (5.10e�2) � 7.7934e�1 (1.77e�2) � 7.2953e�1 (1.13e�2) � 8.4616e�1 (6.07e�3)

F8 4.1683e�1 (3.86e�2) � 6.6858e�1 (3.01e�2) � 7.8489e�1 (2.04e�2) ≈ 7.1729e�1 (2.29e�2) � 7.6740e�1 (3.53e�2)

DTLZ4 8.8439e�1 (5.25e�2) + 8.5177e�1 (1.17e�1) � 8.8445e�1 (5.24e�2) + 7.7634e�1 (2.18e�1) � 8.5600e�1 (5.87e�3)

DTLZ5 3.9531e�1 (1.17e�3) � 3.9151e�1 (2.17e�3) � 3.5400e�1 (1.21e�3) � 3.9851e�1 (2.82e�4) � 4.0051e�1 (8.11e�5)

DTLZ6 3.9592e�1 (1.06e�3) � 2.3293e�1 (3.87e�3) � 3.4221e�1 (1.25e�2) � 4.0020e�1 (1.22e�4) � 4.0075e�1 (3.41e�5)

DTLZ7 4.8886e�1 (1.99e�3) + 4.4574e�1 (7.71e�2) ≈ 4.7258e�1 (3.54e�3) � 4.6903e�1 (1.65e�2) � 4.7680e�1 (4.61e�3)

+/�/≈ 2/22/0 0/23/1 1/22/1 1/23/0 /

Best/All 1/24 0/24 2/24 1/24 20/24
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This study confirms the value and significance of the identification and transfer of prior information in population-based optimization algo-

rithms development. In the future, more research could be devoted to the more precise identification and transmission mechanisms of population

information for tackling specific tasks. In addition, the dynamic multi-leader selection mechanism will be studied further towards adaptive sub-

groups gathering and robust learning for multiobjective optimization problems.
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TABLE 8 Spread values of MBCO/DML and four competitive MOEAs on 24 selected benchmarks.

Problem NMPSO BiGE RVEA MOCell MBCO/DML

FON 3.4052e�1 (3.55e�2) � 1.2565e+0 (2.15e�1) � 1.5754e�1 (1.17e�2) ≈ 3.9661e�1 (4.97e�2) � 1.5492e�1 (1.26e�2)

KUR 1.8784e+0 (2.12e�2) � 1.2636e+0 (1.72e�1) � 3.3203e�1 (8.92e�2) � 4.3646e�1 (4.74e�2) � 2.0532e�1 (2.11e�2)

POL 1.1960e+0 (8.94e�2) � 1.1439e+0 (1.09e�1) � 1.0120e+0 (1.62e�2) � 4.2048e�1 (5.80e�2) � 1.8655e�1 (2.01e�2)

SCH1 1.4424e+0 (9.71e�2) � 8.4813e�1 (7.69e�2) � 7.0122e�1 (1.30e�3) � 3.7669e�1 (4.85e�2) � 1.7537e�1 (1.53e�2)

SCH2 1.4303e+0 (1.51e�1) � 1.0720e+0 (5.37e�2) � 1.1288e�1 (5.52e�4) + 5.6184e�1 (4.92e�2) � 4.5059e�1 (2.39e�2)

ZDT1 1.4471e+0 (8.67e�2) � 1.0553e+0 (7.32e�2) � 2.9734e�1 (1.07e�2) � 3.2887e�1 (4.11e�2) � 1.7281e�1 (1.62e�2)

ZDT2 1.1816e+0 (6.60e�2) � 1.0865e+0 (7.81e�2) � 1.5621e�1 (2.51e�2) ≈ 3.7034e�1 (4.54e�2) � 1.6079e�1 (1.80e�2)

ZDT3 1.7655e+0 (6.10e�3) � 1.1402e+0 (7.41e�2) � 2.7290e�1 (2.13e�2) � 3.8444e�1 (5.22e�2) � 2.1009e�1 (2.24e�2)

ZDT4 1.4135e+0 (1.07e�1) � 1.0445e+0 (1.24e�1) � 4.9388e�1 (1.36e�1) � 4.1596e�1 (4.96e�2) � 1.3962e�1 (1.49e�2)

ZDT6 4.8094e�1 (6.20e�2) + 1.0266e+0 (1.57e�1) ≈ 2.6760e�1 (4.98e�2) + 3.7926e�1 (6.00e�2) + 7.9691e�1 (4.69e�1)

F1 1.2625e+0 (1.22e�1) � 1.0532e+0 (4.78e�2) � 7.4996e�1 (4.76e�2) � 6.8258e�1 (4.50e�2) � 1.6673e�1 (1.25e�2)

F2 1.0474e+0 (8.18e�2) � 1.0051e+0 (8.84e�3) � 9.5625e�1 (6.74e�2) � 9.5231e�1 (6.07e�2) � 1.6901e�1 (1.09e�2)

F3 1.1410e+0 (1.45e�1) � 1.0000e+0 (0.00e+0) � 9.7612e�1 (2.12e�2) � 1.0003e+0 (4.93e�4) � 8.7042e�1 (1.06e�1)

F5 1.3737e+0 (1.10e�1) � 1.0113e+0 (1.26e�2) � 8.3716e�1 (3.36e�2) � 7.8425e�1 (1.64e�2) � 1.6015e�1 (1.32e�2)

F6 1.1677e+0 (7.55e�2) � 1.0163e+0 (1.05e�2) � 9.4188e�1 (3.14e�e�2) � 8.7699e�1 (1.57e�2) � 1.7321e�1 (1.51e�2)

F7 1.0127e+0 (1.74e�1) � 1.0388e+0 (1.03e�1) � 9.6485e�1 (1.91e�2) ≈ 1.0000e+0 (0.00e+0) � 9.5294e�1 (1.06e�1)

F9 1.5472e+0 (8.89e�2) � 1.0288e+0 (5.71e�2) � 5.7133e�1 (6.21e�2) � 4.6858e�1 (3.92e�2) � 1.8046e�1 (2.47e�2)

F10 1.0171e+0 (9.11e�3) � 1.0315e+0 (1.73e�1) � 9.8402e�1 (4.17e�2) � 9.9193e�1 (1.13e�3) � 9.5858e�1 (5.52e�3)

F4 3.3213e�1 (2.15e�2) + 1.5222e+0 (3.04e�1) � 2.2515e�1 (2.57e�2) + 8.1962e�1 (3.87e�1) � 5.8167e�1 (2.24e�1)

F8 1.1369e+0 (2.21e�1) � 1.8895e+0 (8.27e�2) � 2.2842e�1 (2.71e�2) + 8.6206e�1 (4.31e�1) � 4.9563e�1 (2.51e�1)

DTLZ4 3.4291e�1 (1.23e�1) + 8.9203e�1 (6.88e�2) � 1.9362e�1 (1.15e�1) + 5.2168e�1 (1.93e�1) + 5.5522e�1 (5.99e�2)

DTLZ5 1.0852e+0 (9.66e�2) � 1.1070e+0 (7.51e�2) � 5.6981e�1 (7.83e�2) � 3.9684e�1 (3.91e�2) � 2.4243e�1 (2.11e�2)

DTLZ6 1.0941e+0 (1.15e�1) � 1.0157e+0 (1.88e�2) � 4.7718e�1 (8.27e�2) � 5.4538e�1 (5.94e�2) � 2.3355e�1 (1.63e�2)

DTLZ7 5.6031e�1 (3.75e�2) � 9.8863e�1 (1.49e�1) � 3.6312e�1 (2.38e�2) + 4.7362e�1 (4.59e�2) + 5.1079e�1 (4.28e�2)

+/�/≈ 3/21/0 0/23/1 6/15/3 3/21/0 /

Best/All 0/24 0/24 7/24 0/24 17/24
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