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Abstract. Feature selection (FS) has been studied as amulti-objective problem in
recent years to improve the classification effect. In this paper, to expand the abil-
ity of Bacterial Foraging Optimization (BFO) in feature selection problems for
classification, a Multi-objective Adapting Chemotaxis Bacterial Foraging Opti-
mization (abbreviated as MOACBFO) is proposed. In MOACBFO, a structural
variation strategic model is proposed to reduce the computational complexity for
multi-objective problems and applied with a dynamically updated external matrix
to record the performance of bacteria on two objectives. In addition, an adap-
tive chemotaxis step mechanism is designed to help the bacteria jump out of the
local optimality. To further enhance the diversity of bacteria searching capability,
a feature subset updating strategy is developed. The optimal feature subset and
fitness value are stored in the external matrix continuously by comparing them
with the historical value records. The performance of the proposed algorithm is
demonstrated by comparing it with four other advanced swarm intelligent algo-
rithms on 11 high-dimensional microarray datasets. The results indicate that the
MOACBFO performs better in achieving a lower classification error rate using a
small number of features.

Keywords: Bacterial foraging optimization · Feature selection · Structural
variation · Adaptive chemotaxis step size

1 Introduction

Iterative updates in information technology increase the amount of data generated and
retrieved, resulting in most of the data becoming high-dimensional. To deeply uncover
the effective information hidden in the data, researchers are trying to design various
advanced data mining methods. In this context, feature selection has become a widely
studied method as it can reduce the dimensionality of data, using a small combination
of features to express the most information of the primal high-dimensional data.
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Most of the features in the high-dimensional data are not always valid and necessary.
It may contain a large number of redundant, and invalid information [1], which will sig-
nificantly affect the effect of data analysis. For example, redundant featuresmay increase
the computation cost while invalid information may decrease the classification accuracy.
Therefore, an appropriate method of feature selection can improve the reliability and
validity of data analysis. At present, the FS for high-dimensional data has been applied
inmany fields, such as customer relationshipmanagement in enterprises [2], disease pre-
diction [3] in modern medical diagnosis technologies, and customer recommendation
[4] in electronic commerce.

FS is a preprocessing process, using certain evaluation criteria to select subsets from
the original feature space [5]. The process of basic FS is followed in Fig. 1.

Evaluation
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Original Data Final Subset
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Fig. 1. General flow of basic FS.

In the process of FS, the feature subsets are generated according to some regulations
or strategies [1]. Then, the fitness criteria are used to evaluate the effectiveness of the
subsets, and the better performance features are stored in the final feature subset. The
purpose of selecting feature subsets is to filter out invalid, incomplete, and redundant
features as much as possible [2]. In other words, a good feature subset can use fewer
features to present most of the attributes of the original data. Therefore, the information
conveys by the original data can be better retained. From the processing, it can be seen
that FS is also a typical optimization problem. In consequence, FS is now being studied
extensively.

Aiming at reducing feature redundancy, J. Lee [3] designed a multi-variate feature
ranking mechanism for FS in high-dimensional microarray data. This mechanism not
only considers the relevance of features and targets but also considers the redundancy of
repeating features. The rankingmechanismfilters out the high-quality feature to generate
new subsets. E. S. Hosseini and M. H. Moattar [4] also noticed the imbalance of the
data features and instances. The candidate feature subsets were formed and evaluated
by a multi-interactive information strategy to reduce the analysis bias caused by the
imbalanced data.

In addition to data redundancy and imbalance, FS should also consider the computa-
tional complexity. In this regard, some studies used the differential evolution method to
filter features, enhancing the ability of FS to select feature combination [5]. F.Aghaeipoor
and M.M. Javidi [6] adopted a hybrid FS method of filter and wrapper methods, and
selected feature subsets by mRMR and fuzzy rules to improve estimation accuracy and
decrease the computing time.

Many researchers regard FS as a single objective task in the past. However, there are
increasing amounts of researchers who beginning to pay attention to the interpretability
and rationality of the feature subsets generated by FS. The inner connection of each fea-
ture in a subset needs to be considered. Especially, when classifying high-dimensional
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data, the algorithmmay generate some large feature subsets without removing the redun-
dant features, which is antithetical to the original intention of FS to reduce the dimension
of data. Nevertheless, if the feature subsets are too small, it may filter out a lot of infor-
mation. To make the subsets more concise with low dimensions, it is wise to consider
FS as a multi-objective problem. This paper takes error rates of classification and size
of feature subsets as the objective of FS.

The swarm intelligence (SI) algorithms are widely used in multi-objective FS due
to their characteristics of simple structure and fewer mathematical rules. SI algorithms
imitate the evolution processes of the biological population to construct systems with
functions of search optimal solutions. It means to use the population to search a large
number of solutions to a given problem and find out the optimal one. Common SI
algorithms are artificial bee colony (ABC) [7], particle swarm optimization (PSO) [8],
ant colony optimization (ACO) [8], and so on.

Focusing on the problems of multi-objective FS, researchers have made various
improvements based on the original SI methods. In [9], the authors take the classification
accuracy and the number of selected features as the objectives of FS. To reduce the
computational cost of multi-objectives, it embeds the updating mechanism of PSO into
the ABC to control the displacement of search individuals. Besides, a ladder-like sample
combinations strategy is developed to increase search efficiency. Considering reducing
the size of the subsets, Y. Zhou, et al. [10] chose to use the discrete method to compress
the search space of the particle swarm, and set the size of particle population by a flexible
cut-point method to better search optimal solutions.

Only reducing the size of the subsets can easily make the algorithms fall into the
situation of local optimum. To escape the local optimum, W. Wei, et al. [11] design
a vector-based elite learning rule and applied it to the immune algorithm to remove
redundant features in the data being analyzed. However, elite learning often brings about
the problem of premature convergence. To control the algorithms’ speed of convergence,
A. Santiago, et al. [12] propose a fuzzy selection of operators. All in all, SI methods are
applied to multi-objective FS and they can be modified variously.

Except for the SI algorithmsmentioned above, bacterial foraging optimization (BFO)
is also awidely studied SI algorithm.BFOhas been used to dealwith a variety of complex
optimization problems because of its outstanding searchability and versatility. Inspired
by the foraging activities of E. coli, BFO simulates the life process of bacteria, Sect. 2
will give more details.

The common researches of BFO mainly focus on the improvement strategies of the
algorithm, the problemsof combinatorial optimization, andoptimization scheduling. The
improvement strategies mainly include parameters optimization, bacteria chemotaxis
process optimization, and population structure optimization. For example, H. Chen et al.
[13] designed a chaotic local search strategy to better control the convergence speed of
BFO and the defect of the constant step length of bacteria chemotaxis, which increased
the search diversity by dynamically changing the chemotaxis step length. In addition,
the introduction of chaotic strategies has also expanded the search area of the bacteria
population.

Except for the algorithm strategies’ improvements, BFO also has multiple appli-
cations. B. Turanoğlu and G. Akkaya [14], aiming at the problem of dynamic facility
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layout, design a hybrid algorithm combining BFO and simulated annealing (SA) to
solve such complex optimization problems. In addition to the problem of the dynamic
facility, M. Kaur and S. Kadam [15], in the optimal scheduling problem, propose a
multi-objective flora optimization algorithm to find the scheme closest to the optimal
scheduling solution. However, the size of the population will significantly influence the
search effect of BFO. For modulating the search population of the algorithm, H. Wang,
et al. [16] design a multi-dimensional population mechanism of BFO based on the FS
method. The algorithm can generate populations in different sizes, thereby generating
different feature subsets in classification tasks to increase the variety of solutions. At
present, there is very little research that focuses on BFO-based multi-objective FS, but
it can be found from those existing studies that this area is very useful and meaningful
because BFO performs well in multi-objective problems [17–19].

1.1 Goals

This research aims to reduce the dimensionality of high-dimensional data when doing
classification tasks. So we design a modified BFO with the improved strategies of adap-
tive foraging process, structural variation, and update search bacteria population based
on multi-objective FS. The specific contributions are as follows:

• Design a multi-objective BFO with structural variation to improve the problem of
slow convergence of the original algorithm.

• Adaptively adjust the process of chemotaxis, replication, and elimination-dispersal of
the improved BFO to increase the diversity of the search process.

• Design a feature subsets updating mechanism to identify features that can retain
better classification effects and eliminate features that will weaken the classification
accuracy.

• Combine the proposed algorithmwith theKNNclassifier to formawrapper FSmethod
to achieve efficient classification effects.

1.2 Organization

The rest of this article is structured as follows: Sect. 2 describes the principle of the basic
BFO. The proposed algorithm and its improvement strategies are described in Sect. 3.
Section 4 shows the experimental results and analysis, and the conclusion is placed in
Sect. 5.

2 Basic Bacterial Foraging Optimization

The basic Bacterial Foraging Optimization (BFO) was proposed by K.M. Passino,
which mimics the biological habits of E. coli. He designed chemotaxis, replication,
and elimination-dispersion three main processes for the BFO algorithm. In addition,
each bacterium involved activities of swimming, turning, attraction, and repulsion. It
can be seen that BFO is a biological heuristic algorithm, and the researches show that
this algorithm has strong searchability [20].
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The process of bacterial foraging is called chemotaxis. In the chemotaxis, bacteria
swarm towards the placewith a high concentration of nutrients. One chemotaxis contains
two steps: tumbling and swimming. Bacteria select a random direction by tumbling to
find a place with a high nutrient concentration. By swimming, bacteria continuously
exploit the direction with high nutrient concentration. In addition, the bacteria colony
also has a cell-to-cell signaling communicationmechanism via special pheromone. Once
a unit finds a good place, it will release an attraction pheromone to inform other units. On
the contrary, if a bacterium is exposed to a lower nutrient concentration place or a noxious
one, it will release a repulsive pheromone towarn other units to avoid approaching. In the
BFO algorithm, thismechanism speeds up the convergence and finds the global optimum
more efficiently. The position updating of bacterial foraging optimization during the
chemotaxis stage is [20]:

θ i(j + 1, k, l) = θ i(j, k, l) + C(i) �(i)√
�T (i)�(i)

(1)

The θ i(j, k, l) presents the position of ith bacterium in jth chemotaxis, kth and lth
stand for the process of reproduction elimination-dispersal, respectively. C(i)means the
step of chemotaxis and �(i) is a manually setting parameter that controls the actives of
ith bacterium. As there are attraction and repulsion actives between bacteria, the formula
is followed:

Jcc
(
θ i(j, k, l),P(j, k, l)

) = ∑S
j Jcc

(
θ i(j, k, l),θ j(j, k, l)

)
(2)

Where Jcc
(
θ i(j, k, l),P(j, k, l)

)
denotes the cell-to-cell signaling of ith bacterium

among other bacteria. Jcc
(
θ i(j, k, l), θ j(j, k, l)

)
controls the communication level of

attractant or repellant between ith and jth bacterium. Therefore, the ith the bacterium will
be updating with swarming effect not just its fitness J (i, j, k, l):

J (i, j, k, l) = J (i, j, k, l) + Jcc
(
θ i(j, k, l),P(j, k, l)

)
(3)

Reproduction simulates the most basic criteria in the natural world that is survival
of the fittest. It improves the superiority of bacterial colonies and thus accelerates the
convergence of BFO. Firstly, bacteria colonies are ranked according to the health level
of each bacterium. Secondly, half of the bacteria with lower health levels are replaced by
the half with higher. As a result, the overall health level in next-generation is improved.
The health of bacteria are as follow:

J ihealth = ∑Nc+1
j=1 J (i, j, k, l) (4)

Where the J ihealth is the health level of ith the bacterium, it is calculated by adding up
each fitness value in Nc chemotaxis processes.

Elimination-dispersal emulates uncertainty in nature. In the life cycle of a bacteria
colony, each bacterium could die abruptly or be transported to somewhere else randomly
since the uncertain natural disasters. In BFO, the position of bacteria will be reset in
a custom probability Ped , which helps the optimization algorithm reduce premature
convergence.
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3 The Proposed Multi-objective Adapting Chemotaxis BFO
Method

Although the basic BFO can realize solving optimization problems. However, the
algorithm’s computational time cost of BFO will be increased when faced with high-
dimensional data. In addition, the original algorithm is more suitable for single-objective
problems. In this paper, we regard FS as a multi-objective problem with two objectives,
which are “minimize the size of feature subset” and “maximize classification effect
(minimum error rate)”.

This paper proposes an effective algorithm, multi-objective adapting chemotaxis
bacteria foraging optimization (MOACBFO), the general flow of MOACBFO is shown
in Fig. 2. ‘h’ represents the running time of the program, ‘iter’ means the iteration times
of each running. ‘m’ is the swimming number of times of each bacteria.

Fig. 2. General flow of MOACBFO.

Based on the original BFO, MOACBFO has four improved strategies, including
structural variation (structure mutation of the basic BFO), external matrixmechanisms,
adaptive foraging processes, and feature subsets updating mechanism.

3.1 Structure Variation

Traditional BFO is a multi-layer nested structure algorithm, when the bacterial popula-
tion faces a high-dimensional search space,many calculation processeswill be generated.
However, as the scale of data analysis increases, many repetitive calculation results will
be generated, which does not conform to the original intention of creating a concise
and efficient algorithm. Therefore, this paper disassembled the nested structure of BFO,
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setting the three processes (chemotaxis, replication, and elimination-dispersal) to be
carried out sequentially instead of being nested. We canceled the original nested loop
structure of BFO and carried out serial and parallel transformations.

As Fig. 2 shows, in the search process of bacteria, the chemotaxis operation is
performed first, and the classification effect of the intermediate process is used to decide
whether the algorithm goes to replication operation or elimination-dispersal operation in
the next stage of the algorithm. It is worth noting that replication or elimination-dispersal
is not performed in every iteration, only if the conditions are met will one of the activities
take place.

3.2 External Matrix

Tomake BFOmore suitable for solvingmulti-objective problems, we introduce an exter-
nal matrix (EMatrix) [21]. In each iteration, the matrix is used to store the location infor-
mation of the population generated by the improved bacteria optimization algorithm,
the classification error rate of the classifier, and the size of the feature subset generated
each time. The classifier used in this paper is the K-nearest neighbor classifier, which is
lightweight and efficient.

Fei = [xi1, xi2, . . . , xin], i = 1, 2, . . . , z. (5)

Posj = [
Fe′

1,Fe
′
2, . . . ,Fe

′
k

]
(6)

ErrRj = [
fit(Pos1), fit(Pos2), . . . , fit(Positer)

]
(7)

FitNj = [Num(Pos1),Num(Pos2), . . . ,Num(Positer)] (8)

EMatrix = [
Posj,ErrRj,FitNj

]
, j = 1, 2, . . . , iter (9)

Formula 5 represents the set of all features, ‘n’ represents the number of features,
and ‘z’ represents the number of samples. ‘Pos’ records the feature information of the jth

generation of bacterial colony search, and ‘k’ represents the number of selected features,
see Formula 6. ‘ErrR’ represents the classification error rate obtained by training the
feature subset generated by the jth generation of flora into the classifier, see Formula 7
and ‘iter’ represents the number of iterations. ‘FitN’ represents the size of the feature
subset generated by the jth generation of flora, see Formula 8.

3.3 Adapting Foraging Process

The adaptive bacterial foraging process is mainly the adaptive change of the step length
of bacterial chemotaxis. In addition, there are adaptive options for replication and
elimination-dispersal. The basic step length of chemotaxis in BFO is invariable, but
the movement of bacteria is not rigid in the real world. The fixed-step makes the bacte-
ria easy to be caught in the same local place which is not beneficial for the diversified



A Multi-objective Structure Variant Bacterial Heuristic 349

development of the population. In other words, the lack of diversity of the bacterium
will lead to the results becoming incomplete. In this paper, a simple adaptive chemo-
taxis step-changing method is adopted [22]. In the MOACBFO, the initial step control
mechanism for each bacterium is followed formula (10–11):

γ = ∣
∣(1 − i

Swarm

) ∗ (Chestart − Cheend ) + Cheend
∣
∣ (10)

Chestart = |Jnew(i,j)|
|Jnew(i,j)|+γ

= 1(
1+ γ

|Jnew(i,j)|
) (11)

‘γ ’ is an adaptive parameter following formula (10), it controls the step length of
chemotaxis (‘Chest’). Jnew(i, j) is the variation of formula (3). It removes ‘k’ and ‘l’
because the structure of BFO has been changed and the new strategy has followed the
formula (14).

One bacterium may do reduplicative work if there is no communication between
bacteria and the population. To reduce the computation cost, this paper introduces a
learning strategy from PSO, see formula (12).

Cheend = Chestart + caRa(PBi − Pi) + cbRb(B − Pi) (12)

‘PBi’ stands for the best solution of ith bacterium and ‘B’ is the best location searched
by the entire bacteria groups. Table 1 shows the pseudo-code of MOACBFO.

Table 1. The pseudo-code of MOACBFO
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When the error rate is over 50%, the bacteria population will do the elimination-
dispersal operation. A high error rate means the combination of features in the subset
cannot reflect most information of the data. To save the computation resources, we set
the MOACBFO only do elimination-dispersal instead of replication. On the contrary, if
the error rate is small, the MOACBFO will take the replication activity.

3.4 Feature Subsets Updating Strategy

High dimensional data always bring thousands or more instances with many features.
If the search population has been the same all the time, the diversity of feature subsets
will lack change. This paper proposes a feature subsets updating strategy, see Table 2.

Before updating the features in a subset, the position of each bacterium ‘P’ needs to
be found. The basic position updating formula is followed:

P(i, j + 1) = Pos(i, j) + Cen(i)
�(i)√

�T (i)�(i)
(13)

After recording the information of position into EMatrix, the fitness (error rate) must
be calculated and saved into EMatrix. The fitness value Jnew(i, j) is acquired by formula
(14). It uses the K-nearest neighbor to be the classifier, which takes the ‘P’ as the input
value.

Jnew(i, j) = ClassifierKNN (P(i, j + 1)) (14)

The pseudo-code of feature subsets updating strategy is below.

Table 2. The pseudo-code of feature subsets updating
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4 Experiments and Analysis

In this section, the proposed algorithm is compared with four derived versions of
traditional swarm intelligent algorithms. The experiment is carried on 11 microarray
data.

4.1 Experiment Design and Parameter Initialization

The comparing algorithms are BPSO [23], BFO [20], BFOLIW [24] and BWFS
[21]. Table 3 records the characteristics of the comparing algorithms. To compare the
MOACBFO to the multi-objective algorithm, the comparing algorithms in this paper
are all added to the external matrix mechanisms used in this paper. As for this, the
final comparison algorithms are BPSO, BFO, BFOLIW, and BWFS in a multi-objective
version.

Table 3. Algorithms for comparison

Basic algorithms Characteristic

BPSO FS can be treated as a 0/1 problem. For the features, 0 stands for unselected
and 1 stands for selected. The binary particle swarm algorithm is a classical
algorithm and is suitable for solving 0/1 problems

BFO As the basis of the improved method (MOACBFO) in this paper, it is
necessary to show the capacity of BFO in classification targets based on FS

BFOLIW BFOLIW integrates the liner weight strategy to the basic BFO

BWFS BWFS imports the roulette wheel mechanism into BFO to increase bacterial
diversity

To make the comparison experiment more fair and reliable, the parameters set was
referred tomost of the literature. As the popular size S is usually 30 to 50, this paper takes
45 as the popular size and dimension. The maximum iterations are 200. The running
time of the program is 10.

4.2 Data Sources

The testing datasets are 11 microarray data from the UCI machine learning repository
[24]. The microarray datasets are high-dimension data about cancer, which have two or
more categories and more than 5,000 features. The experiment compares the error rate
and the size of the subset of the algorithm.
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Table 4. Microarray datasets

Datasets Features Instance Class

9_Tumors 5726 60 9

11_Tumors 12,533 174 11

14_Tumors 15,009 308 26

Brain_Tumor_1 5920 90 5

Brain_Tumor_2 10367 50 40

Leukemia_1 5328 72 3

Leukemia_2 11225 73 3

Lung_Cancer_I 12600 203 5

SRBCT 2309 83 4

DLBCL 5470 77 2

Prostate_Tumor 10509 102 2

4.3 Experiment Results and Analysis

Figure 3 and Fig. 4 show the experiment results of the comparisons. The abscissa axis
represents the size of the subsets generated by the algorithms, and the axis of ordinates
records the error rate of classification. From the results, MOACBFO always gets a
minimum error rate. It reflects that the MOACBFO has a good ability in searching the
optimization result.

Besides, MOACBFO can get a small number of features in a subset with a lower
error rate compared with other methods. The results in Fig. 3 and Fig. 4 prove that
MOACBFOhas a better comprehensive performance. Especially in the datasetsDLBCL,
Lung-Cancer, Prostate-Tumor, Brain-Tumor2, Leukemia1, and SRBCT, MOACBFO
gets better diversity of results.

To compare the effect of the algorithms in more detail, Table 5 shows the numerical
results of average error rates and subsets’ size of all methods. As shown in the Table
5, the MOACBFO can generally reach an error rate of less than 0.005. Although the
number of features in each dataset is not the smallest one, the error rate of MOACBFO
is low. Since the results need to fit the two objectives (minimize error rates and feature
subsets).
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Fig. 3. Experiments results of all algorithms in comparison on microarray datasets.
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Fig. 4. Experiments results of all algorithms in comparison on microarray datasets.
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Table 5. Average error rate and subset size of all algorithms

Datasets Average Algorithms

MO-B-PSO MO-BFO MO-LIW-BFO MO-BWFS MO-AC-BFO

(Binary) (Original) (Linearly
weight)

(Roulette
wheels)

(Improved
method in this
paper)

9_Tumors A_Size 16 22 16 27 23

A_Error 0.556 0.500 0.611 0.500 0.003

11_Tumors A_Size 14 16 27 24 26

A_Error 0.500 0.519 0.442 0.269 0.002

14_Tumors A_Size 18 18 24 30 17

A_Error 0.663 0.640 0.596 0.596 0.004

Brain_Tumor_1 A_Size 20 21 20 20 21

A_Error 0.185 0.185 0.074 0.148 0.003

Brain_Tumor_2 A_Size 26 22 21 17 25

A_Error 0.214 0.214 0.214 0.143 0.002

DLBCL A_Size 14 17 24 21 20

A_Error 0.130 0.174 0.043 0.043 0.005

Leukemia_1 A_Size 16 22 18 19 29

A_Error 0.190 0.143 0.143 0.095 0.008

Leukemia_2 A_Size 16 19 25 22 20

A_Error 0.190 0.190 0.048 0.095 0.002

SRBCT A_Size 17 21 25 27 48

A_Error 0.167 0.208 0.125 0.417 0.003

Lung_Cancer_I A_Size 16 25 22 26 31

A_Error 0.213 0.115 0.148 0.098 0.003

Prostate_Tumor A_Size 16 20 21 21 25

A_Error 0.226 0.194 0.161 0.129 0.013

5 Conclusions

In general, this paper proposes amodified FSmethodMOACBFO and receives good per-
formance in comparing with four swarm intelligence algorithms on 11 high-dimensional
microarray datasets. MOACBFO effectively improves the classification results of the
modified BFO method in a multi-objective optimization perspective. In addition, it
achieves the four goals proposed in this paper. MOACBFO has a good convergence
effect, better diversity of searching results, higher classification accuracy, and better
effect during the multi-objective FS process in the target of classification. However,
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MOACBFO needs more comparison to become more stable. In the future, we should
paymore attention to the application ofMOACBFO and its modified version on practical
problems.
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