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© Background
© Motivation
© Optimize inventory policy with DRL

@ Ongoing progress and future work
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@ Inventory management is the process of managing the flow of goods
from the source to the customer.

@ It involves ordering, storing, pricing, and selling, etc., of products at
the right time and place.
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@ Uncertainty resources:

o Demand side (stochastic demand, censored demand,...);
o Supply side (supply uncertainty, multiple supply resources,...);
o Logistic (delivery lead time, disruptions,...).

TOTAL TIME: 47 DAYS

e Dimensional curse (consider more factors: multiple products,
fulfillment,... )

Yixin WANG et al DRL4IM December 8, 2023 4/15



@ Heuristics V.S. Deep Reinforcement Learning

o No general heuristic rules;
e Inventory policy optimization is non-linear and high-dimensional;
e Make inventory decisions automatically by DRL.
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Deep reinforcement learning

@ The policy is represented by DNN to solve complicated problems;

@ The policy is updated by constantly interacting with the environment
and getting rewards or penalties.

https:/ /www.youtube.com/watch?v=Dw3BZ60 _8LY
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Inventory management model

@ Stochastic demand environment

o Seasonal/Poisson demand environments
o Explore a DRL-based policy and access more available demand data to

reduce the demand uncertainty.
@ Inventory system with nonzero lead time
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Figure 1: Dynamics of inventory management system.
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Inventory management model

o States:
S5t = (Dn It, Qt)
where D; is a demand window at time t including the demand
information from period t — 7 to t — 1, {di—r, dt—74+1, ..., de—1}, It
represents the current inventory position, and Q; is the undelivered
orders {qt—j+1,.--s Gr—1}
@ Actions: replenishment quantity, a; = gy;
@ Rewards: profit-to-go function
o In lost-sales inventory system®:

Re(t, qe, die) = pdy — ¢k + Coqr + Chlle — de] T + Cpld: — l]*

o Objective: maximize the long-term profit

V(St) = max Rt(sh qt) + Z P(St—i—l = ’ St, Qt)Vt+1($/)

q:€9Q;
s'€Sty1

1 awrence V Snyder and Zuo-Jun Max Shen. Fundamentals of supply chain theoryi John Wiley & Sonsz=2019;
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Instances

@ Inventory management simulator

o Lost-sale inventory system
finite-horizon length: 66 (weeks)

fixed costs cx: 0

ordering cost ¢,: 2

holding cost cx: 1

selling price p: 10

lost-sales cost c¢,: 4, 8

lead time /: 4, 8, 12

demand pattern: Poisson, Seasonal

Poisson demand pattern

Seasonal demand pattem

— stochastic demand

— average gemand

demand quantities
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Optimization with DRL

@ Proximal policy optimization with actor-critic?

A minibatch of random samples
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2 John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv prepriiit arXiv:1707.06347 (2017):

Yixin WANG et al DRL4IM

December 8, 2023 10/15



Training

Table 1: The hyperparameters of PPO-AC

Hyperparameters Values
Discount factor y 0.99
GAE weight parameter A 095
Buffer size 256
Epoches K 16
Mini-batch size m 64
Hidden layers 3
Clipped parameter e 0.2
Entropy coefficient 3 le-2
Activation function tanh()
Hidden neural units [256, 128, 128]

Actor network learning rate  le-2, le-4, le-6

Unit of profit per period

Critic network learning rate

le-2, le-4, 1e-6

Training steps T 150000
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Figure 2: Learning curve (Poisson demand)
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quantities

quantities
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Behaviors

@ Remove the demand information: s; = (/t, Q)

lead time = 4 periods
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lead time = 12 periods
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Figure 4: Learning curves and policy trajectory without demand information
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@ Compare DRL-based policy with the SOTA heuristic method

@ Explore an effective representation and learning model in more
complicated supply chain networks, e.g., multi-echelon, multi-sourcing
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Thank youl
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